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Thesis sketch for Tomoko Ishihara

Introduction. Every student of mechanics encounters discussion of the idealized
one-dimensional dynamical systems

F (x) = mẍ with F (x) =

{ 0 : free particle
−mg : particle in free fall
−kx : harmonic oscillator

at a very early point in his/her education, and with the first & last of those
systems we are never done: they are—for reasons having little to do with
their physical importance—workhorses of theoretical mechanics, traditionally
employed to illustrated formal developments as they emerge, one after another.
But—unaccountably—the motion of particles in uniform gravitational fields1 is
seldom treated by methods more advanced than those accessible to beginning
students.2 It is true that terrestrial gravitational forces are so relatively weak
that they can usually be dismissed as irrelevant to the phenomenology studied
by physicists in their laboratories,3 but it will my thesis that the 1-dimensional
free fall problem has very much to teach us of a formal nature.

1 It is to avoid that cumbersome phrase that I adopt the “free fall” locution,
though technically free fall presumes neither uniformity nor constancy of the
ambient gravitational field .

2 The place to insert reference to the results of a bibliographic search, listing
both a sampling of the classical/quantum texts that (like Goldstein’s Classical
Mechanics) conspicuously fail to mention the free fall problem, and the most
important of those relatively few texts that do treat aspects of the problem.

3 There are exceptions: I am thinking of experiments done several decades
ago where neutron diffraction in crystals was found to be sensitive to the value
of g: would be good to track down such references.
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1. Free fall trajectories in spacetime. The general solution of

ẍ + g = 0 (1)

can be described
x(t) = a + bt− 1

2gt
2 (2)

where a and b are arbitrary constants. Standardly we associate a and b with
initial data

a ≡ x(0) : b ≡ ẋ(0)

but other interpretations are sometimes more useful: from stipulated endpoint
conditions

x0 = a + bt0 − 1
2gt

2
0

x1 = a + bt1 − 1
2gt

2
1

we compute (its easy by hand if we compute b first, but ask Mathematica)

a =
x0t1 − x1t0

t1 − t0
− 1

2gt0t1

b =
x1 − x0

t1 − t0
+ 1

2g(t0 + t1)


 (3)

giving

x(t;x1, t1;x0, t0) =
{x0t1 − x1t0

t1 − t0
− 1

2gt0t1

}
+

{x1 − x0

t1 − t0
+ 1

2g(t0 + t1)
}
t− 1

2gt
2 (4)

which checks out: x(t0;x1, t1;x0, t0) = x0, x(t1;x1, t1;x0, t0) = x1.

2. Translational equivalence in spacetime. Spacetime translation of what we
will agree to call the “primitive solution”

x = − 1
2gt

2 (5.1)

gives
(x− x0) = − 1

2g(t− t0)2 (5.2)

or
x = (x0 − 1

2gt
2
0) + (gt0)t− 1

2gt
2

To say the same thing another way: if into (2) we introduce the notation

b = gt0

a = x0 − 1
2g b

2 = x0 − 1
2gt

2
0

}
(6)

then we achieve (5.2). In short: every solution is translationally equivalent to
the primitive solution. In this regard the free fall problem is distinguished from
both the free particle problem

General solution of ẍ = 0 reads x(t) = a + bt. Take x(t) = Bt to
be the primitive solution (B a prescribed constant “velocity”). To
bring a + bt to the form Bt one must
• translate in space and
• rescale the time coordinate
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and the harmonic oscillator

General solution of ẍ = −ω2x reads x(t) = a cosωt + (b/ω) sinωt.
Take x(t) = (B/ω) sinωt to be the primitive solution (here B is
again a prescribed constant “velocity”: we have arranged to recover
free particle conventions in the limit ω ↓ 0 ). To bring the general
solution to primitive form one must
• translate in time and
• rescale the space coordinate

remark: Some figures here would make everything clear. Figure 1 captures
the situation as it relates specifically to the free fall problem.

The preceding observations motivate the following

conjecture: If x(t) = x0 +f(t− t0) describes the general
solution of a differential equation of the form ẍ = F (x) then
necessarily F (x) = constant.

—the proof of which is, in fact, easy. The conjecture identifies a seldom-
remarked uniqueness property of the free fall problem, the effects of which will
haunt this work.

Figure 1: Shown in red is a graph of the “primitive” free fall
solution (5.1). Other solutions of ẍ + g = 0 are seen to have the
same shape; i.e., to be translationally equivalent.

3. Lagrangian, Hamiltonian and 2-point action. If, as is most natural, we take
the free fall Lagrangian to be given by

L(ẋ, x) ≡ 1
2mẋ2−U(x) (7.1)

U(x) = mgx (7.2)

then
p ≡ ∂L/∂ẋ = mẋ
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and the Hamiltonian becomes

H(p, x) = pẋ− L(ẋ, x) = 1
2mp2 + mgx (8)

The action associated with any test path x(t) is given by

S[x(t)] ≡
∫ t1

t0

L
(
ẋ(t), x(t)

)
dt

Take x(t) to be in fact a solution of the equation of motion. Take it, more
particularly, to be the solution described at (2). Then

S[a + bt− 1
2gt

2] =
∫ t1

t0

L(b− gt, a + bt− 1
2gt

2) dt

= m
{

( 1
2b

2 − ag)(t1 − t0) − bg(t21 − t20) + 1
3g

2(t31 − t30)
}

Take a and b to be given by (3). Then Mathematica supplies4

S(x1, t1;x0, t0) = 1
2m

{
(x1 − x0)2

t1 − t0
− g(x0 + x1)(t1 − t0)− 1

12g
2(t1 − t0)3

}
(9)

This is the action functional associated with (not must some arbitrary “test
path” linking (x0, t0) −→ (x1, t1) but with) the dynamical path linking those
spacetime points: it is not a functional but a function of the parameters
(x1, t1;x0, t0) that serve by (4) to define the path, and is, for reasons now
obvious, called the “2-point action function.”

It becomes notationally sometimes convenient to drop the 1’s from x1 and
t1, and to write S(x, t;x0, t0). We observe that the free fall action function (9)
gives back the more frequently encountered free particle action

↓
= 1

2m
(x1 − x0)2

t1 − t0
when the gravitational field is turned off: g ↓ 0

4. Energy & momentum. The total energy of our freely falling particle is given
by

E(t) = 1
2mẋ2(t) + mgx(t)

= 1
2mp2(t) + mgx(t)

= instantaneous numerical value of the Hamiltonian

(10)

Taking x(t) to be given by (2) we compute

E(t) = 1
2m(b2 + 2ga) = constant (11)

4 For the first occurance of this result in my own writing, see quantum
mechanics (), Chapter 1, page 21. But beware: one must reverse the sign
of g to achieve agreement with results quoted there.
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Energy conservation is no surprise: it follows directly from the t-independence
of the Hamiltonian (which is to say: from the t-independence of the potential).

Working from (2) we find that the momentum

p(t) = m(b− gt) (12)

which follows also from

p(t) =
√

2m[E −mgx(t)]

=
√

m2(b2 + 2ga) − 2m2g(a + bt− 1
2gt

2)

=
√

m2(b2 − 2gbt + g2t2)

=
√

m2(b− gt)2

Working from (4)—or (more simply) by drawing upon (3)—we obtain

p(t) = m
{x1 − x0

t1 − t0
+ 1

2g(t0 − 2t + t1)
}

(13)

which means that a particle that moves along the trajectory (x0, t0) −→ (x1, t1)
must be launched with momentum

p(t0) = m
{x1 − x0

t1 − t0
+ 1

2g (t1 − t0)
}

and arrives with momentum

p(t1) = m
{x1 − x0

t1 − t0
− 1

2g (t1 − t0)
}

General theory asserts, and computation confirms, that these equations could
also have been obtained from

p(t1) = +
∂S(x1, t1;x0, t0)

∂x1

p(t0) = −∂S(x1, t1;x0, t0)
∂x0


 (14)

Notice that

∆p ≡ p(t1) − p(t0) = −mg (t1 − t0) =
∫ t1

t0

(−mg) dt = impulse

and that, according to (13), p(t) interpolates linearly between its initial and
final values.

5. Noether’s theorem. It is to a mathematician (Emmy Noether, ) that
physicists owe recognition of an illuminating connection between
• an important class of conservation laws and
• certain invariance properties (“symmetries”) of the dynamical action.

We look here only to some particular instances of that connection, as they relate
specifically to the free fall problem.
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We saw in §2 that time translation generally, and infinitesimal time
translation (x, t) �−→ (x, t + δt) more particularly,5 maps solutions to other
solutions of the free fall equations:

(x− x0) + 1
2g(t− t0)2 = 0 �−→ (x− x0) + 1

2g(t− (t0 − δt))2 = 0

Figure 2: Graphs of a free fall and of its temporal translate. If the
initial motion is identified by specification of its endpoints then to
identify its translate one must modify both endpoints:

(x1, t1;x0, t0) �−→ (x1, t1 + δt;x0, t0 + δt)

Noether argues6 that

δS = S(x1, t1 + δt;x0, t0 + δt) − S(x1, t1;x0, t0)

= J(ẋ, x)
∣∣∣t1
t0

· δt with J(ẋ, x) ≡ −
[
p(ẋ, x)ẋ− L(ẋ, x)

]
But it is a manifest implication of (9) that

δS = 0 : the dynamnical action is t-translation invariant

and from this it follows that[
p(ẋ, x)ẋ− L(ẋ, x)

]
t1

=
[
p(ẋ, x)ẋ− L(ẋ, x)

]
t0

which asserts simply that energy is conserved .

5 Noether worked within the framework provided by the calculus of
variations, so found it natural to assign special importance to infinitesimal
transformations.

6 See classical mechanics (), page 163.
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Similarly . . .we saw in §2 that space translation generally, and infinitesimal
space translation (x, t) �−→ (x+δx, t) more particularly, maps solutions to other
solutions of the free fall equations:

(x− x0) + 1
2g(t− t0)2 = 0 �−→ (x− (x0 − δx)) + 1

2g(t− t0)2 = 0

Figure 3: Graphs of a free fall and of its spatial translate. Again,
if we adopt endpoint specification then we must write

(x1, t1;x0, t0) �−→ (x1 + δx, t1;x0 + δx, t0)

Noether’s argument in this instance supplies

δS = S(x1, t1 + δt;x0, t0 + δt) − S(x1, t1;x0, t0)

= J(ẋ, x)
∣∣∣t1
t0

· δt where now J(ẋ, x) ≡ p(ẋ, x)

But it is a manifest implication of (9) that—owing to the presence of the
(x0 + x1)-term (which vanishes in the free particle limit g ↓ 0)—

δS 	= 0 : the dynamnical action is not x-translation invariant

and from this it follows that[
p(ẋ, x)

]
t1

	=
[
p(ẋ, x)

]
t0

: momentum is not conserved

Evidently it is not the “symmetry of the space of motions” that matters: it is
symmetry of the dynamical action that gives rise to conservation laws.

6. 2-point Hamilton-Jacobi equations. Classical mechanics, pursued to its
depths, supplies the information that the dynamical action function satisfies a
pair of (generally non-linear) partial differential equations—namely, the
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Hamilton-Jacobi equation

H
(∂S(x1,t1;•,•)

∂x1
, x1

)
+ ∂S(x1,t1;•,•)

∂t1
= 0

and its time-reversed companion

H
(∂S(•,•;x0,t0)

∂x0
, x0

)
− ∂S(•,•;x0,t0)

∂t0
= 0

In the present context those equations read

1
2m

(∂S(x1,t1;•,•)
∂x1

)2 + mgx1 + ∂S(x1,t1;•,•)
∂t1

= 0 (15.1)
1

2m

(∂S(•,•;x0,t0)
∂x0

)2 + mgx0 − ∂S(•,•;x0,t0)
∂t0

= 0 (15.2)

and Mathematica confirms that the S(x1, t1;x0, t0) of (9) does in fact satisfy
those equations.

There are, of course, infinitely many other bi-functions F (x1, t1;x0, t0)
that satisfy the H-J system (15). We have yet to describe the sense in which S
occupies a distinguished place within that population.

7. Separated solutions of the 1-point Hamilton-Jacobi equation. In some respects
deeper, and in all respects simpler and more transparent . . . than the theory of
2-point H-J functions is the theory of 1-point H-J functions, central to which is
the (solitary) Hamilton-Jacobi equation

H
(∂S(x,t)

∂x , x
)

+ ∂S(x,t)
∂x = 0 (16)

As—briefly—to the meaning of that equation: given a function S(x) ≡ S(x, 0)
the fundamental relation

p(x) = ∂S(x,0)
∂x (17)

serves to describe a curve C0 on phase space (i.e., on (x, p)-space). The H-J
equation (16) describes the dynamical motion of that curve:

C0 −−−−−−−−−−−−−−−−−−−−−−−−−→
Hamiltonian-induced phase flow

Ct (18)

We will have occasion later to describe concrete instances of (18).

In the case of interest (16) reads

1
2m

(∂S(x,t)
∂x

)2 + mgx + ∂S(x,t)
∂t = 0 (19)

What happens if we attempt to solve that non-linear partial differential equation
by separation of variables? Write

S(x, t) = W (x) + F (t)

and obtain
1

2m

(∂W (x)
∂x

)2 + mgx = −∂F (t)
∂t

whence
1

2m

(dW (x)
dx

)2 + mgx = +E

dF (t)
dt = −E

}
: E is a separation constant
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Immediately
F (t) = F0 − Et

W (x) =
∫ x√

2m[E −mgξ] dξ

= 2
3mg

√
2m[E −mgx]3 + W0

which supply this E -parameterized family of particular H-J functions

S(x, t;E) = 2
3mg

√
2m[E −mgx]3 − Et + S0 (20)

Here we have lumped the additive constants: S0 ≡ W0 + F0.7

We will revisit this topic after we have acquired quantum mechanical reason
to do so: for the moment I must be content mere to set the stage. We are in
the habit of thinking that solutions obtained by separation can be combined to
produce the general solution of a partial differential equation. How is that to
be accomplished in the present instance? Quantum theory will motivate us to
ask this sharper question: How can the H-J functions S(x, t;E) be combined
to produce the S(x1, t1;x0, t0) of (9)?8

8. Hamiltonian methods. The free fall Hamiltonian

H(p, x) = 1
2mp2 + mgx

supplies canonical equations

ẋ = +∂H/∂p = 1
mp

ṗ = −∂H/∂x = −mg

}
(21)

which are transparently equivalent to (1). The motion of an arbitrary observable
A(p, x, t) is therefore given by

Ȧ = ∂A
∂x

∂H
∂p

− ∂A
∂p

∂H
∂x

+ ∂A
∂t

≡ [A,H ] + ∂A
∂t

(22)

Energy conservation is, from this point of view, immediate

Ḣ = [H,H ] = 0

and so is momentum non-conservation:

ṗ = [ p,H ] = [ p,mgx] = −mg 	= 0

7 Because it is always useful to inquire “What happens in the free particle
limit to the gravitational result in hand?” we expand in powers of g and obtain
the curious result

S =
{
S0 − 4

3
E2

P g−1
}

+
{
Px− Et

}
− 1

2
m2x2

P g + · · ·

where P ≡
√

2mE.
8 General theory relating to those questions is developed in Appendix B:

“Legendre transformation to/from the ‘energy representation’ and its Fourier-
analytic quantum analog” to the class notes cited in footnote 6.
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Phase flow carries

(x, p)0 −−−−−−−−−→
phase flow

(x, p)t = (x0 + 1
mp0t− 1

2gt
2, p0 −mgt) (23)

Necessarily (x, p)0 and (x, p)t lie on the same isoenergetic curve, and those
E -parameterized curves

1
2mp2 + mgx = E

are parabolic, oriented as shown in the following figure:

Figure 4: Effect of phase flow on a representative population of
phase points, computed on the basis of (23). The x-axis runs →,
the p-axis runs ↑. I have set m = g = 1 and assigned to the
phase points the initial coordinates (0, 0.4), (0, 0.6), (0, 0.8), (0, 1.0),
(0, 1.2) and (0, 1.4). The coaxial parabolas all have the same shape,
and are conveniently distinguished/identified by their x-intercepts:
xE = E/mg.

We now adjust our viewpoint, agreeing to look upon . . .

9. Gravitation as an artifact of non-inertiality. The root idea is that when we
encounter an equation of motion of the form

FFF + mGGG = mẍxx

we should think of the mGGG -term not as a “force that happens to adjust its
strength in proportion to the mass of the particle upon which it acts” (shades
of Galileo!)—indeed, not as a “force” at all—but as an “acceleration term” that
has slipped to the wrong side of the equality: that we should instead write

FFF = m(ẍxx−GGG)

and interpret the non-Newtonian structure of the expression on the right to
signal that xxx must refer to a non-inertial coordinate system. To adopt such
a view9 is to dismiss gravitation as a “fictitious force,” akin to the centrifugal

9 Hard to do if, as I have, you’ve every been hospitalized by a fall, though
we speak here of nothing less than Einstein’s lofty Equivalence Principle.
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and Coriolis “forces.” The idea can be implemented, in a degree of generality
sufficient for the purposes at hand,10 as follows:

Let x and x, which refer to Cartesian coordinatizations of 1-space, stand
in the simple relation

x = x + a(t)

Evidently a(t) describes the instantaneous location, relative to the X-frame, of
the X-origin (conversely, −a(t) describes the instantaneous location, relative to
the X-frame, of the X-origin):

x(0, t) = +a(t)
x(0, t) = −a(t)

Assume X to be inertial: assume, in other words, that the force-free motion of
a mass m relative to X can be described

mẍ = 0

In x-coordinates that statement becomes

m(ẍ + ä) = 0

To recover (1) we have only to set a(t) = 1
2g t

2. (We might, more generally, set
a(t) = a0 + a1t + 1

2g t
2 but in the interest of simplicity I won’t.) Then

x = x + 1
2g t

2

x = x− 1
2g t

2

Motion which is seen to be free with respect to X is seen as free fall to the left
when referred to the X-frame which X sees to be accelerating to the right.

Turning now from the kinematic to the Lagrangian dynamical aspects of
the problem, and taking

L(ẋ, x) = 1
2mẋ2 : free particle lagrangian

as an obvious point of departure, we construct

L(ẋ, x, t) ≡ L(ẋ + g t, x + 1
2g t

2) = 1
2m(ẋ + g t)2

which (gratifyingly, but not at all to our surprise) gives back (1):

d
dtm(ẋ + g t) = m(ẍ + g) = 0

The Lagrangian L(ẋ, x, t) does not much resemble the Lagrangian encountered
at (7), but in fact they differ only by a gauge term:[

1
2m(ẋ + g t)2

]
=

[
1
2mẋ2 −mgx

]
+ d

dt

(
mgxt + 1

6mg2 t3
)

10 For a fairly detailed general account of the theory of fictitious forces see
pages 101–110 in the class notes cited several times previously.6
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Our program—the objective of which is to recover all the unfamiliar details
of free fall physics from the simpler details of free particle physics—proceeds
from the elementary device of stepping from an inertial frame to a uniformly
accelerated frame, but is seen now to involve rather more than a simple change
of coordinates x −→ x = x− 1

2g t
2: it is a 2-step process

x −→ x = x− 1
2g t

2

L −→ L = L + d
dtΛ

involving a coordinate transformation and a synchronized gauge transformation.
We must attend carefully to conceptual/notational distinctions at risk of
becoming confused (or—which is almost as bad—confusing). I spell out the
detailed meaning and some of the immediate implications of the second of the
preceding statements:

L(ẋ) ≡ 1
2mẋ2

↓
L(ẋ, x) ≡ 1

2mẋ2 −mgx

= L(ẋ + g t) + d
dtΛ(x, t)

Λ(x, t) ≡ −mgxt− 1
6mg2t3

= 1
2m(ẋ + g t)2 −mg

[
ẋt + x + 1

2gt
2
]

Collaterally

p ≡ ∂L/∂ẋ = mẋ

↓
p ≡ ∂L/∂ẋ = mẋ

= (∂L/∂ẋ) (∂ẋ/∂ẋ)︸ ︷︷ ︸ +(∂Λ/∂x)

= (∂x/∂x) = 1
= p−mgt

Look now to the transformation of the Hamiltonian. Generally, the fact
that the Lagrangian responds as a scalar to coordinate transformations implies
that the Hamiltonian does too: that would give

H(p, x) ≡ pẋ− L = 1
2mp2

↓
H(p, x) ≡ pẋ− 1

2m(ẋ + g t)2
∣∣∣
ẋ→p/m

= 1
2mp2 − pg t− 1

2mg2t2

But gauge adjustment of the Lagrangian is found11 to cause the Hamiltonian to
pick up an subtractive t -derivative of the gauge function, which in the present

11 See page 198 in classical mechanics ().
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instance supplies

↓
= 1

2mp2 − pg t− 1
2mg2t2 − d

dt

[
−mgxt− 1

6mg2t3
]

ẋ→p/m

= 1
2mp2 + mgx

10. Contact with the theory of canonical transformations. From

x −→ x = x− 1
2g t

2

p −→ p = p−mgt

}
(24)

it follows trivially that

[x, p ] ≡ ∂x

∂x

∂p

∂p
− ∂p

∂x

∂x

∂p
= 1

which is to say: the transformation (24) is canonical . At any given t the
equations (24) describe a rigid translation of the phase plane, and it is because
of that “rigidity” that the t -parameterized curves traced by individual phase
points are congruent (see again Figure 4).

Classical mechanics supplies two distinct techniques for “generating”
canonical transformations—one associated with the name of Legendre, the other
with that of Lie. We look first to the former:12

Legendre recognizes generators of four standard types

F1(x, x), F2(x, p), F3(p, x), F4(p, p)

—each of which is a function of “half the old phase coordinates (x, p) and half
the new (x, p).” A moment’s tinkering leads us to the Type 2 generator

F2(x, p) ≡ (x− 1
2g t

2)(p + mgt) (25)

from which we recover (24) by writing

p = ∂F2/∂x = p + mgt

x = ∂F2/∂p = x− 1
2g t

2

}
(26)

Notice that in the limit g ↓ 0 we are left with a well-known “generator of the
identity”: F2(x, p) = xp.

Lie would have us undertake to achieve (24) not “all at once” (as Legendre
did) but incrementally, by iteration of infinitesimal canonical transformations.
His idea can be implemented as follows: in place of (24) write

12 See pages 224–234 in classical mechanics ().
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x(u) = x− 1
2g t

2u

p(u) = p−mgtu

}
(27)

Here u is a dimensionless parameter that in effect “tunes the strength” of the
gravitational field and enables us to smoothly interpolate between free particle
physics and free fall physics: more particularly

x(0) = x

p(0) = p
and

x(1) = x

p(1) = p

It follows from (27) that
d
dux(u) = − 1

2g t
2

d
dup(u) = −mgt

These equations can be made to assume the design of Hamilton’s canonical
equations of motion

d
dux(u) = + ∂

∂p K(p, x) = −[K,x]
d
dup(u) = − ∂

∂xK(p, x) = −[K, p ]

}
(28)

provided we set
K(p, x) = mgtx− 1

2g t
2p (29)

Formal iteration13 leads to this description of the solution of (28):

x(u) = x− u[K,x] + 1
2!u

2[K, [K,x]] − 1
3!u

3[K, [K, [K,x]]] + · · ·
= x− u 1

2g t
2

p(u) = p− u[K, p ] + 1
2!u

2[K, [K, p ]] − 1
3!u

3[K, [K, [K, p ]]] + · · ·
= p− umgt

from which we recover (24) at u = 1. It is the fact that x and p enter linearly
into the design of K(p, x) that accounts for the exceptional simplicity of these
results (i.e., for the disappearance of terms of O(u2)).

Turning now from discussion of what the transformation does to phase
coordinates to discussion of what it does to the expression of the physics . . . if
we start from

H(p) = 1
2mp2 : gives canonical equations

{
ẋ = p/m
ṗ = 0

then the theory of canonical transformations12 informs us we should construct

H(p, x) = H + ∂
∂tF2

=
[

1
2m (p + mgt)2

]
+ mg(x + 1

2gt
2) − g t(p + mgt)

= 1
2mp2 + mgx

13 See pages 234–239 in classical mechanics ().
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The resulting equations

ẋ = p/m

ṗ = −mg

}
: canonical equations of free fall (30)

could alternatively have been obtained from the original equations, since when
expressed in terms of transformed phase coordinates (x, p) they become

ẋ + gt = (p + mgt)/m
ṗ + mg = 0

which after trivial simplifications give back (30).

The canonical transformations (27) can be recovered from the following
(u− u)-parameterized family of Legendre generators:14

F (p, u;x, u) ≡ [x− 1
2g(u− u)t2 ][p + mg(u− u)t ] (31.1)

Acting on the basis of a Hamilton-Jacobi-inspired hunch, we compute

K
(
p, ∂F (p,u;x,u)

∂p

)
= mgt[x− 1

2g(u− u)t2] − 1
2g t

2p

= mgtx− 1
2g t

2p− 1
2mg2 t3(u− u)

∂F (p,u;x,u)
∂u = +[mgtx− 1

2g t
2p− mg2 t3(u− u)]

K
(∂F (p,u;x,u)

∂x , x
)

= mgtx− 1
2g t

2[p + mg(u− u)t ]

= mgtx− 1
2g t

2p− 1
2mg2 t3(u− u)

∂F (p,u;x,u)
∂u = −[mgtx− 1

2g t
2p− mg2 t3(u− u)]

which give

K
(
p, ∂F (p,u;x,u)

∂p

)
− ∂F (p,u;x,u)

∂u = 1
2mg2 t3(u− u)

K
(∂F (p,u;x,u)

∂x , x
)

+ ∂F (p,u;x,u)
∂u = 1

2mg2 t3(u− u)

What are we to make of the non-0’s on the right sides of those equations? They
can be dismissed as artifacts, “gauged away.” For just as

Lagrangian & Lagrangian + arbitrary function of t

give rise to the same Lagrange equations, and

Hamiltonian & Hamiltonian + arbitrary function of t

give rise to the same canonical equations of motion, so do

14 Here I write u → u− u to introduce a “floating initial value of the evolution
parameter” and make other slight notational adjustments—all to facilitate
comparison in a moment with the H-J equations encountered in §6.
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Legendre generator & Legendre generator
+ arbitrary function of the evolution parameter u

Lie generator & Lie generator
+ arbitrary function of the evolution parameter u

—this because the Legendre generator does its work not nakedly, but through
the agency of its derivatives ∂F/∂(old, new arguments), the Lie generator does
its work not nakedly, but through the agency of its derivatives ∂K/∂(x’s, p’s).
With that license we reassign the work formerly done by F (p, u;x, u) to

F(p, u;x, u) ≡ F (p, u;x, u) + 1
4mg2 t3(u− u)2 (31.2)

and obtain
K

(
p, ∂ F(p,u;x,u)

∂p

)
− ∂ F(p,u;x,u)

∂u = 0

K
(∂ F(p,u;x,u)

∂x , x
)

+ ∂ F(p,u;x,u)
∂u = 0

}
(32)

We will remain alert for other, independent, & more convincing grounds on
which to argue that F is “more natural” than F . But the essential lesson
here15 is that

The Hamilton-Jacobi equations (15) have only incidentally to do
with dynamics, and that only because phase flow happens to be a
t-parameterized canonical transformation. More deeply, they serve
to establish a relationship between the Lie generator (which does its
work iteratively) and the Legendre generator (which does its work
“all at once, beginning to end”) of any given parameterized family
of canonical transformations.

My “incidentally” is not intended to be dismissive, for the fact of the matter
is that phase flow is canonical, and the H-J equations say what is arguably the
deepest thing that can be said about classical motion.

11. Recovery of gravitational Hamilton-Jacobi theory from that of a free particle.
The motion (x0, t0) −→ (x1, t1) of our free particle is described

x(t;x1, t1;x0, t0) = x0 +
x1 − x0

t1 − t0
(t− t0)

=
{x0t1 − x1t0

t1 − t0

}
+

{x1 − x0

t1 − t0

}
t (33)

which when inserted into

S(x1, t1;x0, t0) =
∫ t1

t0

1
2mẋ2(t) dt

gives the free dynamical action

= 1
2m

{
(x1 − x0)2

t1 − t0

}
(34)

15 The point is elaborated on pages 245–252 in classical mechanics ().
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which is readily seen to satisfy the Hamilton-Jacobi equations

1
2m

∂S
∂x1

+ ∂S
∂t1

= 0
1

2m
∂S
∂x0

− ∂S
∂t0

= 0

These statements could have been obtained from their free fall counterparts (4)
and (9), but our objective here is to proceed in the reverse of that direction: to
obtain the physics of uniformly accelerated free fall from the simpler physics of
unaccelerated free motion.

The recovery of (4) from (33) follows straightforwardly from x = x+ 1
2gt

2:
we verify by computation that

x(t;x1 + 1
2gt

2
1, t1;x0 + 1

2gt
2
0, t0) = x(t;x1, t1;x0, t0) + 1

2gt
2

The recovery of (9) from (34) is more interesting:

Action integrals S[path], like (say) length integrals �[curve], respond to
coordinate transformations by numerical invariance: that is a principle source
of their formal utility (responsible for the general covariance of Lagrange’s
equations). But in the present context (see again page 12) the coordinate
transformation is understood to be accompanied by a gauge transformation

L = L + d
dtΛ

which entails

S = S + Λ
∣∣∣t1
t0

with Λ(x, t) = −mgxt− 1
6mg2t3

Computation now supplies

S(x1 + 1
2gt

2
1, t1;x0 + 1

2gt
2
0, t0) −mg

[
x1t1 + 1

6mg2t31
]

+ mg
[
x0t0 + 1

6mg2t30
]

= S(x1, t1;x0, t0)

12. Bouncing ball basics. Erect now a prefectly reflective barrier at x = 0, the
intended effect of which is to cause the particle (“ball”) to “bounce” elastically
whenever its descent brings it into contact with the barrier (Figure 5). Evidently

xmax(E) = E
mg (35)

and the E-dependent period (computed from xmax(E) = 1
2g[

1
2τ ]2) is given by

τ(E) =
√

8E
mg2 (36)

If we start the clock at the time of a bounce, then the flight up until the time
of the next bounce can be described

x(t) = 1
2g t(τ − t) : 0 < t < τ (37.1)
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1 2 3 4

0.25

Figure 5: Flight of a bouncing ball, computed from (37.2) with the
parameters g and τ both set equal to unity.

1 2 3 4

-0.5

0.5

Figure 6: Time-derivative of the preceding figure, computed from
(38.2): the velocity decreases uniformly between bounces.

To notate the “bounce-bounce-bounce. . . ” idea we might write

x(t) = 1
2g

∑
n

[t− nτ ][(n + 1)τ − t] · UnitStep[[t− nτ ][(n + 1)τ − t]] (37.2)

but there is seldom reason to do so. Between bounces the velocity decreases
uniformly

ẋ(t) = 1
2gτ − gt : 0 < t < τ (38.1)

so we have

ẋ(t) =
∑

n

[
1
2gτ − g(t− nτ)

]
· UnitStep[[t− nτ ][(n + 1)τ − t]] (38.2)

which describes a sawtooth (Figure 6). The τ -dependence of xmax is described

xmax = x( 1
2τ) = 1

8gτ
2 (39)
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13. Probabilistic aspects of the bouncing ball problem. We proceed from the
idea that the probability Q(x)dx that a bouncing ball will be found in the
neighborhood dx of x (0 � x � xmax) is the same as the fraction of the time
that the particle spends in that neighborhood. Working from the figure

xmax

dx

dt τ

Figure 7: Construction used to compute Q(x).

we have
Q(x)dx = Q(x) 1

2g(τ − 2t)dt = 2dt
τ

giving

Q(x) = 4
gτ(τ − 2t)

But 2t(x) = τ ±
√

(gτ2 − 8x)/g so

Q(x) = 1

2
√

1
8gτ

2
√

1
8gτ

2 − x

= 1
2
√
xmax

√
xmax − x

: 0 � x � xmax (40)

This “ballistic distribution function” is plotted in Figure 8. Calculation confirms
that (as expected/required)

∫ xmax

0

Q(x) dx = 1

On the other hand, momentum decreases uniformly during the course of a flight
(see again Figure 6), ranging from +1

2mgτ down to − 1
2mgτ , so the momentum

distribution P (p) is flat on that interval, where it has constant value (mgτ)–1.
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Figure 8: The “ballistic distribution function” Q(x), displayed as
a function of the dimensionless variable x/xmax. The singularity at
x = xmax reflects the tendency of ballistic particles to linger at the
apex of their flight.

14. Action per bounce. Working from (9) we have

S(0, τ ; 0, 0) = value of the bounce-to-bounce action

= 1
2m

{
− 1

12g
2τ3

}
(41)

But we can approach this issue also from another angle:
Between one bounce and the next the phase flow is ballistic, and can be

described
x(t) = 1

2g t(τ − t)
p(t) = 1

2mg(τ − 2t)

Eliminating t between those equations gives

x− xmax = −xmax · (p/p0)2 with p0 ≡ 1
2mgτ (42)

which inscribes on phase space a parabola that opens to the left (Figure 9).
Equivalently

p(x) = p0

√
1 − (x/xmax) (43)

It follows that the area of the region bounded by (42) can be described

enveloped area A =
∮

p dx = 2
∫ xmax

0

p0

√
1 − (x/xmax) dx

= 4
3p0xmax

= 4
3 · 1

2mgτ · 1
8gτ

2

= 1
12mg2τ3 (44)

We are presented here with a problem, which I have been thus far unable to
resolve: Why are (41) and (44) not in agreement?
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p0

xmax

Figure 9: The phase space representation of bounce-bounce-bounce
consists of going round � and round the parabolically bounded region
shown. We have interest in the area of that region.

15. Planck quantization. We have arrived here at the historic birthplace of
quantum mechanics. For Planck (), in order to account mechanically for
the successful description of the blackbody radiation spectrum to which he had
been led by other (interpolative thermodynamic) means, was forced to dismiss
all classical oscillator motions except those that conformed to the quantization
condition ∮

p dx = nh : n = 1, 2, 3, . . . (45)

Bringing that condition to the bouncing ball problem, we on the basis of (44)
have

1
12mg2τ3 = nh

according to which only bounces of certain discrete periods

τn =
[
12nh/mg2

] 1
3 : n = 1, 2, 3, . . .

are “allowed.” This, by (36), is equivalent to the assertion that a ball can
bounce only with certain discrete energies

En = mg2

8 τ2
n

= En
2
3 with E ≡

[
9
64mg2h2

] 1
3 (46)

We expect a refinement of (46) to emerge from the exact quantum theory of a
bouncing ball—the theory achieved by Schrödinger quantization of the classical
physics. But before turning to the details of the latter theory we look to an
aspect of the classical problem that is directly relevant to Feynman’s alternative
to Schrödinger quantization.
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x1

x0

t0 t1

Figure 10: Two of the distinct bounce paths that link a specified
pair of spacetime points. Implementation of Feynman quantization
program would require us to ennumerate the totality of such paths,
in the general case.

16. Multiple paths & the ennumeration problem. It is clear from figures such as
the one shown above that, in general, a finite multitude of bounce paths link
(x0, t0) −→ (x1, t1). To ennumerate the members of the population one has to
discover all the values of τ and δ such that (see again (37.2))

x(t; τ, δ) ≡ 1
2g

∑
n

ξ(t− nτ + δ) · UnitStep[ξ(t− nτ + δ)]

ξ(t) ≡ t(τ − t)

conforms to the endpoint conditions

x(t0; τ, δ) = x0 and x(t1; τ, δ) = x1

Though the problem appears on its face to be difficult (intractable?), these
pertinent facts are immediately evident:

• It must be the case that xmax � (greater of x0, x1). This (by xmax= 1
8gτ

2)
sets a limit on how small τ can be:

τ � τmin ≡
√

8(greater of x0, x1)
g

• This sets a limit on how many bounces can occur in the available time:

maximal number Nmax of bounces = 1 + integral part of
t1 − t0
τmin
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• I conjecture (the demonstratiuon may not be difficult, but at the moment
does not tempt me) that there exists always

exactly one 0-bounce path∗

exactly one 1-bounce path∗

exactly one 2-bounce path
...

exactly one Nmax -bounce path

linking (x0, t0) to (x1, t1), and that the paths marked ∗ always exist (this
becomes clear when one looks to the limit g ↓ 0).

17. Close companion of the bouncing ball problem: the wedge potential. Slight
adjustments of results appropriate to the bouncing ball problem

U(x) =
{
mgx : x � 0
∞ : x < 0

give results appropriate to the more “oscillator-like” system

U(x) = mg |x| (47)

I call this (for graphically obvious reasons) the “wedge potential,” but in the
literature it is often called the “vee potential.” The associated force law is

F (x) =
{
−mg : x > 0
+mg : x < 0

18. Quantum mechanical free fall according to Schrödinger. The Schrödinger
equation reads {

− �
2

2m

(
∂
∂x

)2 + mgx
}
ψ(x, t) = i� ∂

∂tψ(x, t) (48)

The basic problem is to display the normalized solution of (48)∫ +∞

−∞
|ψ(x, t)|2 dx = 1

that conforms to the prescribed initial data ψ(x, t0).

If ψ(x, t) is assumed to possess the separated structure

ψ(x, t) = ψ(x) · e− i
�
E t

then (48) requires that ψ(x) be a solution of the t-independent Schrödinger
equation {

− �
2

2m

(
d
dx

)2 + mgx
}
ψ(x) = Eψ(x) (49)

which will serve as our point of departure.
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Let (49) be written

(
d
dx

)2
ψ(x) = 2m2g

�2

(
x− E

mg

)
ψ(x)

Now introduce the shifted/rescaled new independent variable y = a
(
x − E

mg

)
and adopt the notation ψ(x) = Ψ(y). The differential equation then becomes

(
d
dy

)2Ψ(y) = 2m2g
�2 a−3yΨ(y)

which motivates us to assign to a the particular value a =
(

2m2g
�2

) 1
3 . The

t -independent Schrödinger equation is brought thus to the strikingly simple
form (

d
dy

)2Ψ(y) = yΨ(y) (50)

where—remarkably—the value of E has been absorbed into the definition of
the independent variable:

y ≡
(

2m2g
�2

) 1
3
(
x− E

mg

)
(51)

At (50) we have Airy’s differential equation, first encountered in George
Airy’s “Intensity of light in the neighborhood of a caustic” ().16 The
solutions are linear combinations of the Airy functions Ai(y) and Bi(y), which
are close relatives of the Bessel functions of orders ± 1

3 , and of which (since
Bi(y) diverges as y → ∞) only the former

Ai(y) ≡ 1
π

∫ ∞

0

cos
(
yu + 1

3u
3
)
du (52)

will concern us.17 To gain insight into the origin of Airy’s construction, write

f(y) = 1
2π

∫ +∞

−∞
g(u)eiyu du

and notice that f ′′ − yf = 0 entails

1
2π

∫ +∞

−∞

[
− u2g(u) + ig(u) d

du

]
eiyu du = 0

16 At this point I begin to borrow directly from material that begins on
page 22 of Chapter 2: “Weyl Transform and the Phase Space Formalism” in
advanced quantum topics ().

17 For a summary of the properties of Airy functions see Chapter 56 in
Spanier & Oldham.21 Those functions are made familiar to students of quantum
mechanics by their occurance in the “connection formulæ” of simple WKB
approximation theory: see Griffiths’ §8.3, or C. M. Bender & S. A. Orszag,
Advanced Mathematical Methods for Scientists & Engineers (), §10.4.
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Integration by parts gives

1
2π ig(u)eiyu

∣∣∣+∞

−∞
− 1

2π

∫ +∞

−∞

[
u2g(u) + ig ′(u)

]
eiyu du = 0

The leading term vanishes if we require g(±∞) = 0. We are left then with a
first-order differential equation u2g(u)+ig ′(u) = 0 of which the general solution
is g(u) = A · ei 1

3 u3
. So we have

f(y) = A · 1
2π

∫ +∞

−∞
ei (yu+ 1

3 u3) du = A · 1
π

∫ ∞

0

cos
(
yu + 1

3u
3
)
du

It was to achieve ∫ +∞

−∞
Ai(y) dy = 1 (53)

that Airy assigned the value A = 1 to the constant of integration.

Returning with this mathematics to the quantum physics of free fall, we
see that solutions of the Schrödinger equation (49) can be described

ψE(x) = N · Ai
(
k(x− aE)

)
(54)

where N is a normalization factor (soon to be determined), and where

k ≡
(

2m2g
�2

)1
3 = 1

“natural length” of the quantum free fall problem

aE ≡ E
mg = classical turning point of a particle lofted with energy E

E ≡ kaE = E
mg(natural length) ≡ dimensionless energy parameter

We observe that

mg · (natural length) = mg
(

2m2g
�2

)− 1
3 =

(
mg2

�
2

2

)1
3

differs only by a numerical factor from the E ≡
[

9
64mg2h2

]1
3 =

[
9
32

]1
3
(

mg2
�
2

2

)1
3

encountered at (46), and that we confront now the question: Why the factor?18

It is a striking fact—evident in (54)—that the eigenfunctions ψE(x) all
have the same shape (i.e., are translates of one another: see Figure 11), and
remarkable also that the the energy spectrum is continuous, and has no least
member : the system possesses no ground state. One might dismiss this highly
unusual circumstance as an artifact, attributable to the physical absurdity of
the idealized free-fall potential

U(x) = mgx : −∞ < x < +∞

18
[

9
32

] 1
3 = 0.655185.
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Figure 11: Free fall eigenfunctions ψE(x) with E < 0, E = 0,
E > 0, in descending order. The remarkable translational similarity
of the eigenfunctions can be understood as a quantum manifestation
of the self-similarity evident at several points already in the classical
physics of free fall (see again §2 and Figure 4).
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but then has to view with surprise the major qualitative difference between
the cases g2 �= 0 (no ground state) and g = 0 (ground state abruptly springs
into existence). I prefer to adopt the notion that “free fall” is free motion
relative to a non-inertial frame , and to trace that“major qualitative difference”
to the major difference between being/not being inertial.

The eigenfunctions ψE(x) share with the free particle functions e±
i
�

√
2mE x

the property that they are not individually normalizable,19 but require assembly
into “wavepackets.” They do, however, comprise a complete orthonormal set,
in the sense which I digress now to establish. Let

f(y,m) ≡ Ai(y −m)

To ask of the m-indexed functions f(y,m)
• Are they orthonormal :

∫
f(y,m)f(y, n) dy = δ(m− n)?

• Are they complete:
∫
f(x,m)f(y,m) dm = δ(x− y)?

is, in fact, to ask the same question twice, for both are notational variants of
this question: Does∫ +∞

−∞
Ai(y −m)Ai(y − n) dy = δ(m− n)?

An affirmative answer (which brings into being a lovely “Airy-flavored Fourier
analysis”) is obtained as follows:

=
(

1
2π

)2∫∫∫
ei [(y−m)u+ 1

3 u3]ei [(y−n)v+ 1
3 v3] dudvdy

= 1
2π

∫∫
ei 1

3 (u3+v3)e−i(mu+nv)

{
1
2π

∫
eiy(u+v) dy

}
︸ ︷︷ ︸ dudv

δ(u + v)

= 1
2π

∫
ei 1

3 (v3−v3)︸ ︷︷ ︸ eiv(m−n) dv = δ(m− n)

1

So for our free fall wave functions we have the “orthogonality in the sense of
Dirac:”∫ +∞

−∞
ψ∗

E′(x)ψE′′(x) dx = N2

∫ +∞

−∞
Ai

(
k(x− aE ′)Ai

(
k(x− aE ′′) dx

= N2 1
k · δ(E′ − E′′)

↓
= δ(E′ − E′′) provided we set N =

√
k (55.1)

The functions thus normalized are complete in the sense that∫ +∞

−∞
ψ∗

E (x′)ψE(x′′) dE = δ(x′ − x′′) (55.2)

19 Asymptotically Ai2(y) ∼ 1

π
√

|y|
sin2

(
2
3 |y|

3
2 + π

4

)
dies as y ↓ −∞, but so

slowly that the limit of
∫ 0

y
Ai2(u) du blows up.
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19. Construction & structure of the free fall propagator. Quite generally (subject
only to the assumption that the Hamiltonian is t -independent), eigenvalues En

and eigenfunctions ψn(x), when assembled to produce the “propagator”

K(x1, t1;x0, t0) ≡
∑

n

ψn(x1)ψ
∗
n(x0)e

− i
�

En(t1−t0) (56)

permit one to describe the dynamical evolution of any prescribed initial state:

ψ(x, t0) �−→ ψ(x, t) =
∫

K(x, t;x0, t0)ψ(x0, t0) dx0 (57)

The propagator, looked upon as an (x0, t0)-parameterized function of x and t,
is a solution of the t -dependent Schrödinger equation, distinguished from other
solutions by the property

lim
t↓t0

K(x, t;x0, t0) = δ(x− x0)

In the present context (56) supplies

K(x, t;x0, 0) =
∫ +∞

−∞
ψE(x)ψ∗

E (x0)e−
i
�

E(E) t dE

where, in the notation introduced on page 25, E(E) ≡ (mg/k)E. Working from

ψE(x) = N·Ai
(
k[x− a]

)
= N· 1

2π

∫ +∞

−∞
ei ( 1

3 u3+k[x−a]u) du

with N =
√
k and a = E/k, we have20

K =
(

N
2π

)2
∫∫∫

ei ( 1
3 u3+k[x−a]u)ei ( 1

3 v3+k[x0−a]v)e−ikwa dudvda

=
(

N
2π

)2
∫∫∫

ei 1
3 (u3+v3)eik(xu+x0v)e−i(ku+kv+kw)a dadudv

= N2

2π

∫∫
ei 1

3 (u3+v3)eik(xu+x0v) δ(ku + kv + kw)︸ ︷︷ ︸ dudv

= k–1δ(u + v + w)

= N2

2πk

∫
ei 1

3 [v3−(v+w)3]eik[x0v−x(v+w)] dv

But v3 − (v + w)3 = −3v2w − 3vw2 − w3 so

= N2

2πke
−i( 1

3 w3+kxw) ·
∫

e−iwv2−i[w2+k(x−x0)] dv

20 The following argument was taken from page 32 of some informal notes
“Classical/quantum mechanics of a bouncing ball” (March ) that record
the results of my first excursion into this problem area.
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The sole surviving integral is (formally) Gaussian, and its elementary evaluation
supplies

K = N2

2πke
−i( 1

3 w3+kxw) ·
√

2π
2iwe−

1
4iw [w2+k(x−x0)]

2

= 1
2π

√
2π
2iw exp

{
i

[
k2(x− x0)2

4w
+

[2k(x− x0)
4

− kx
]
w +

[
1
4 − 1

3

]
w3

]}

When—tacitly—I elected to use a rather than E as my “eigenfunction identifier”
and wrote 1

�
(mga) = kwa I assigned to w the enforced value w = (mg2/2�)

1
3 t.

Inserting this and k = (2m2g/�
2)

1
3 into the preceding equation we (after a good

bit of simplification) obtain

=
√

m
2πi�t exp

{
i
�

[
m
2t (x− x0)2 − 1

2mg(x + x0)t− 1
24mg2t3

]}
(58)

whence (after a trivial notational adjustment: t �→ t1 − t0)

K(x1, t1;x0, t0) =
√

m
2πi�(t1−t0)

· e i
�

S(x1,t1;x0,t0) (59)

where S(x1, t1;x0, t0) is precisely the classical free-fall action function first
encountered at (9) on page 4. Some theoretical importance attaches also to
the fact that √

m
2πi�(t1−t0)

can be written
√

i
h

∂2S
∂x1∂x0

By way of commentary: If, into the Schrödinger equation (48), we insert

ψ = Ae
i
�
S

we obtain

A
{

1
2m (Sx)2 + mgx + St

}
− i�

{
1

2m

[
ASxx + 2AxSx

]
+ At

}
︸ ︷︷ ︸−�

2 1
2mAxx = 0

= 1
2A

{
( 1

mSxA
2)x + (A2)t

}
Returning with this information to (59) we find that

• the leading
{}

vanishes because S satisfies the Hamilton-Jacobi equation
• the final term vanishes because A is x-independent
• the the middle

{}
—which brings to mind a “continuity equation,” of

precisely the sort that A2 = |ψ|2 is known in quantum mechanics to
satisfy (as a expression of the “conservation of probability”)—vanishes by
computation:(

1
m

[
m
t (x− x0) − 1

2mgt
]
1
t

)
x

+
(

1
t

)
t
= 1

t2 − 1
t2 = 0
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20. Dropped Gaussian wavepacket. Let ψ be given initially by

ψ(x, 0) = 1√
σ
√

2π
e−

1
4 [x/σ]2 (60)

Then
|ψ(x, 0)|2 = 1

σ
√

2π
e−

1
2 [x/σ]2

is a normalized Gaussian ∫ +∞

−∞
|ψ(x, 0)|2 dx = 1

with second moment

〈x2 〉 =
∫ +∞

−∞
x2|ψ(x, 0)|2 dx = σ2

Returning with (58) and (60) to (57), we confront the messy Gaussian integral

ψ(x, t) =
√

m
iht

1
σ
√

2π

∫
exp

{
i
�

[
m
2t (x− x0)2 − 1

2mg(x + x0)t

− 1
24mg2t3

]
− 1

4σ2x
2
0

}
dx0

Mathematica responds with a result

=
√

m
iht

1
σ
√

2π
2
√
π
[

1
σ2 − i 2m

�t

]− 1
2

· exp
{

m
24�

12gt2x�−12x2
�+g2t4�−48igmσ2xt−8ig2mσ2t3

2mσ2+i�t

}
which we have now to disentangle. Look first to the prefactor, which after
simplifications becomes√

m
iht

1
σ
√

2π
2
√
π
[

1
σ2 − i 2m

�t

]− 1
2

=
√

1
Σ(t)

√
2π

Σ(t) ≡ σ
[
1 + i �

2mσ2 t
]

= σ

√
1 +

(
�t

2mσ2

)2 · eiα(t)

≡ σ(t) · eiα(t)

with α(t) ≡ arctan
(

�t
2mσ2

)
. Look next to the argument of the exponential: we

find {
etc.

}
= − [x− 1

2 gt2]2

4σ2(t) − iβ(t)

where β(x, t) is a complicated term the details of which need not concern us.
We now have

ψ(x, t) = 1√
σ(t)

√
2π

exp
{
− 1

4

[x− 1
2gt

2

σ(t)

]2

− iθ(x, t)
}

with θ ≡ 1
2α+β. The phase factor is of no present interest because it disappears
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when we look to the probability density

|ψ(x, t)|2 = 1
σ(t)

√
2π

exp
{
− 1

2

[x− 1
2gt

2

σ(t)

]2
}

(61.1)

An even more tedious variant20 of the same argument serves to establish
that if—in place of (60)—we had taken21

ψ(x, 0) = e−
i
�

px · 1√
σ
√

2π
e−

1
4 [x/σ]2

as our starting point we would have been led to

|ψ(x, t)|2 = 1
σ(t)

√
2π

exp
{
− 1

2

[x + vt− 1
2gt

2

σ(t)

]2
}

(61.2)

with v ≡ p/m, from which we recover (61.1) as a special case. Equations
(61) describe Gaussian distributions the centers of which move ballistically,
but which disperse hyperbolically22—just what you would expect to see if the
standard free particle result were viewed from a uniformly accelerated frame.

21. Other dropped wavefunctions. What happens when you drop the familiar
free particle eigenfunction

ψ(x, 0) = 1√
h
e

i
�

px : p an adjustable real constant

Immediately

ψ(x, t) =
√

m
iht

1
h

∫
exp

{
i
�

[
m
2t (x− x0)2 − 1

2mg(x + x0)t

− 1
24mg2t3

]
+ i

�
px0

}
dx0

= 1√
h

exp
{

i
�

[
px− 1

2mp2t− g
{
mxt− 1

2pt
2 + 1

6mgt3
}]}

(62)

I have not been able to account term-by-term in an intuitively satisfying way
for the design of this result, but have verified that S(x, t; p) ≡

[
etc.

]
does in

fact satisfy the Hamilton-Jacobi equation (equivalently: ψ(x, t) does satisfy the
Schrödinger equation).

21 See page 9 in “Gaussian wavepackets” ().
22 I say “hyperbolically” because

σ(t) = σ0

√
1 + (t/τ)2 : τ ≡ 2mσ2

0/�

can be written
(σ/σ0)

2 − (t/τ)2 = 1

Note that the dispersion law is g -independent.
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It is a curious (though self-evident!) fact that when you drop a free-fall
eigenfunction

ψ(x, 0) ≡ ψE(x)

it does not fall : it simply “stands there and buzzes”

ψ(x, 0) −→ ψ(x, t) = ψ(x, 0) · e− i
�

E(E)t (63)

I have described elsewhere a “quantum calculus of moments”23 that can be
used to show—very simply—that the phenomenon illustrated at (61) is in fact
not special to Gaussian wavepackets: every wavepacket falls in such a way that
〈x〉 moves ballistically, and ∆x grows hyperbolically. Equations (62) and (63)
do not provide counterexamples, for they refer to wavefunctions that are not
normalizable, do not describe quantum states—are, in short, not wavepackets.

22. The free particle limit of the quantum mechanics of free fall. Trivially{
− �

2

2m

(
∂
∂x

)2 + mgx
}
ψ(x, t) = i� ∂

∂tψ(x, t) (48)

↓{
− �

2

2m

(
∂
∂x

)2
}
ψ(x, t) = i� ∂

∂tψ(x, t) : free particle Schrödinger equation

and

Kg(x, t;x0, 0) =
√

m
2πi�t exp

{
i
�

[
m
2t (x− x0)2− 1

2mg(x + x0)t− 1
24mg2t3

]}
(58)

↓
K0(x, t;x0, 0) =

√
m

2πi�t exp
{

i
�

[
m
2t (x− x0)2

]}
: free particle propagator

when gravity is turned off: g2 ↓ 0. More interesting is the question: What
happens to the eigenfunctions? How do the Airy functions manage to become
exponentials? The following remarks have been abstracted from the discussion
that appears on pages 48–52 of the notes already cited,20 where I found the
problem to be surprisingly ticklish.

Borrowing from page 28, we have

ψE(x) =
√
k ·Ai

(
k[x− a]

)
=

√
k · 1

2π

∫ +∞

−∞
ei ( 1

3 u3+k[x−a]u) du

with
k ≡

(
2m2g

�2

)1
3

a ≡ E
mg : becomes ∞ as g ↓ 0

from which we would like to recover 1√
2π�

exp( i
�

√
2mE x) as lim g2 ↓ 0.

23 advanced quantum topics () Chapter 2, page 51. The method is
an elaboration of the idea central to Ehrenfest’s theorem.
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A slight notational adjustment gives

ψE(x) =
√
k · 1

2π

∫ +∞

−∞
eia ( 1

3a u3+k[xa−1]u) du

which by a change of variable u �→ w : w3 ≡ 1
au

3 becomes

= 1
2π

√
k
ka

1
3

∫ +∞

−∞
eia ( 1

3 w3+ka1/3[xa−1]w) du

Here
ka

1
3 =

[
2m2g

�2 · E
mg

] 1
3 =

[
2mE

�2

] 1
3 ≡ B

so we have

= 1
2π

√
k
B

∫ +∞

−∞
eiah(w) dw (64)

with h(w) ≡ 1
3w

3 + B
[x
a − 1

]
w

which we want to evaluate in the limit a ≡ E/mg ↑ ∞. Now (64) is of such a
form as to invite attack by the “method of stationary phase,”24 which would
give

∼ 1
2π

√
k
B

[ 2π
ah′′(w0)

] 1
2
ei[ah(w0) + π

4 ]

where w0 marks the point where h(w) assumes its minimal value. From

h
′
(w) = w2 + B

[x
a − 1

]
= 0 we have w0 = ±

√
B

[
1− x

a
]

and h
′′(w0) = 2w0 > 0 requires us (i) to select the upper sign and (ii) to enforce

the restriction a− x > 0. We now have

= 1
2π

√
k
B

[ 2π

a2
√
B

(
1− x

a
)] 1

2

ei
π
4 · eiah(w0)

with

h(w0) = − 2
3

[
B

(
1− x

a
)] 3

2

= B
3
2

{
− 2

3 + x
a − 1

4

(x
a

)2 + · · ·
}

B
3
2 =

√
2mE
�
≡ 1

�
p

Thus do we obtain

ψE(x) ∼ 1
2π

√
ka

√
2πB

3
4
{
1 + O(g)

}
eia

{
− 2

3B
3
2 + π

4

}
· eiB

3
2
{
x + O(g)

}
=

√
p
ka · 1√

h
e

i
�

px · ei (phase) (65)

24 See A. Erdélyi, Asymptotic expansions (), page 51. Also of special
relevance is Erdélyi’s §2.6.
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I am willing to discard the phase factor as an unphysical artifact, but have been
unable to argue that the factor

√
p/ka is effectively unity. So not only is the

argument tediously“ticklish”—it elludes me. The problem, I suspect, has to do
with enforcement of the restriction a− x > 0.

There is, however, a work-around, every step of which is feasible in the
present instance. It can be diagramed

Kg −−−−−−−−−−−−−−−−−−−−−−−−−→
g↓0

K0

↑ | (66)
| ↓

free fall eigenfunctions free motion eigenfunctions

where the unproblematic meaning of Kg −→ K0 was described already on
page 32.

23. Recovery of the quantum mechanics of free fall from free particle theory. The
problem studied in the preceding section

free fall eigenfunctions −−−−−−−−−−−−−−−−−−→
g turned OFF

free motion eigenfunctions

(and found there to be difficult) is of less interest to me than its inversion:

free fall eigenfunctions←−−−−−−−−−−−−−−−−−−
g turned ON

free motion eigenfunctions

The motivating question: How—in detail—does the quantum motion of a free
particle come to look “gravitational” when viewed from an accelerated frame? I
do not propose to address that problem here . . . except to remark that it clearly
calls for new methods (one cannot turn asymptotic analysis “inside out”), and
that the scheme (66) can be run in reverse: the hard work, from this point of
view, is entirely classical, and was accomplished in §§10 & 11 when we showed
how to achieve

Sg(x1, t1;x0, t0)←−−−−−−−−−−−−−−−−−−
g turned ON

S0(x1, t1;x0, t0)

We have only to exponentiate that result, and read off the eigenfunctions. But
that exsercise would leave much of the relevant theory still in shadow.

24. A first look at the quantum bouncer problem. The quantum mechanical free
fall and bouncer problems take identical Schrödinger equations as their points
of departure. But in the latter case we require

ψ(x < 0, t) = 0 : all t

This amounts to a requirement that the

probability current = i �
2

2m (ψ∗
xψ − ψxψ

∗)
∣∣∣∣
x=0

= 0 : all t
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which we achieve by imposing the boundary condition

ψ(0, t) = 0 : all t (67)

It is the presence of that boundary condition that serves to distinguish the one
problem from the other, and it makes all the difference: it renders the energy
spectrum discrete, and the eigenfunctions normalizable. And it is to acquire
the technique needed to work out the detailed implications of that condition
that we look not to some of the (semi-miraculous!) . . .

25. Detailed properties of the Airy function. . . . and of certain functions derived
from it.

Reading rough estimates of the locations of the zeros of Ai(ξ) from a graph
of the function (Figure 12), we feed that data into Mathematica commands of

-20 -15 -10 -5

Figure 12: Graph of Ai(ξ), used to obtain rough estimates of the
locations of the zeros: 0 > ξ1 > ξ2 > · · ·.

the form FindRoot[AiryAi[ξ],{ξ,−2}] and obtain the data tabulated on the
following page. Concerning the data in the third column: Spanier & Oldham
(An Atlas of Functions (), page 559) report that

Z(n) ≡ − 1
4q − 5

3q
−2 with q ≡ [3π(4n− 1)]

2
3 (68.1)

provides (in their words) “excellent approximations to ξn for n � 5.”25 So I
have tabulated

∆n ≡ Z(n)− ξn

in support of that claim.26 The implication is that for n very large (which is to
say: in the classical limit) we can expect to have

ξn ∼ z(n) ≡ − 1
4 [12πn]

2
3

25 For an elaborately refined description of Z(n) see Abramowitz & Stegun:
10.4.105.

26 I do not know how to account for the hiccup at n = 11, which so far as I
have been able to determine is real.
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table of the leading zeros of the airy function

n ξn ∆n

1 − 2.338107 − 1.492× 10−3

2 − 4.087949 − 1.126× 10−4

3 − 5.520560 − 2.618× 10−5

4 − 6.786708 − 9.466× 10−6

5 − 7.944134 − 4.337× 10−6

6 − 9.022651 − 2.304× 10−6

7 − 10.040174 − 1.353× 10−6

8 − 11.008524 − 8.551× 10−7

9 − 11.936016 − 5.664× 10−7

10 − 12.828777 − 3.985× 10−7

11 − 13.691489 − 5.088× 10−7

12 − 14.527830 − 2.142× 10−7

13 − 15.340755 − 1.566× 10−7

14 − 16.132685 − 1.007× 10−7

15 − 16.905634 − 1.005× 10−7

16 − 17.661300 − 9.653× 10−8

17 − 18.401133 − 5.686× 10−8

18 − 19.126381 − 5.422× 10−8

19 − 19.838130 − 4.550× 10−8

20 − 20.537333 − 3.831× 10−8

Convergence is very slow

Z(102)− z(102) = 0.217725

Z(103)− z(103) = 0.046847

Z(104)− z(104) = 0.021744

Z(105)− z(105) = 0.010093

Z(106)− z(106) = 0.004685

Z(107)− z(107) = 0.002174

but convergence in the fractional sense—which is to say, the convergence of

F (n) ≡ Z(n)− z(n)
Z(n)
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—is quite rapid:
F (101) = −1.697× 10−2

F (102) = −1.670× 10−3

F (103) = −1.667× 10−4

F (104) = −1.667× 10−5

F (105) = −1.667× 10−6

F (106) = −1.667× 10−7

Julio Gea-Banacloche27 adopts this intermediate approximation

ξn ≈ − 1
4q = −[ 3π

8 (4n− 1)]
2
3 = −

[
3π
2 (n− 1

4 )
] 2

3 (68.2)

to the zeros of Ai(ξ). See “Theory of a transcendental equation encountered in
the theory of single slit diffraction” () for some related material.

We now use NIntegrate[ ] to compute normalization factors

Nn ≡
[ ∫ ∞

0

[Ai(ξ + ξn)]2 dξ
]− 1

2

and with their aid construct normalized functions

fn(ξ) ≡ Nn Ai(ξ + ξn) : n = 1, 2, 3, . . . (69.1)

Thus do we obtain

f1(ξ) = 1.426105 Ai(ξ − 2.338107)
f2(ξ) = 1.245157 Ai(ξ − 4.087949)
f3(ξ) = 1.155797 Ai(ξ − 5.520560)
f4(ξ) = 1.097875 Ai(ξ − 6.786708)
f5(ξ) = 1.055592 Ai(ξ − 7.944134)
f6(ξ) = 1.022576 Ai(ξ − 9.022651)
f7(ξ) = 0.995649 Ai(ξ − 10.040174)
f8(ξ) = 0.973010 Ai(ξ − 11.008524)
f9(ξ) = 0.953543 Ai(ξ − 11.936016)

...




(69.2)

though those constructions are stored in Mathematica’s memory with a good
deal more precision that I have displayed: for example, the command

InputForm[f9]

produces

0.9535427774272334 ∗ AiryAi[−11.936015568074044 + ξ]

27 “A quantum bouncing ball,” AJP 67, 776 (1999).
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To Gea-Banacloche we are indebted for the “little guesswork” that led him
to the discovery that the normalization factors are well approximated by the
remarkably simple construction28

N(n) ≡
[ π√
−ξn

] 1
2 ≈

[
π

[ 38π(4n− 1)]
1
3

] 1
6

=
[ 8π2

3(4n− 1)

] 1
6

(70)

—the accuracy of which can be gauged from the following table:

n Nn N(n)

1 1.426105 1.423372
2 1.245157 1.246518
3 1.155797 1.156323
4 1.097875 1.098146
5 1.055592 1.055755
6 1.022576 1.022684
7 0.995649 0.995725
8 0.993020 0.973067
9 0.953543 0.953586

The functions (69) are normalized by construction, so we are not surprised
that NIntegrate[f1f1, {ξ, 0,∞}] yields output 1., to which InputForm assigns
the expanded meaning 1.0000000000000002. But (though it is, by general
principle, a quantum mechanical necessity) I find it to be function-theoretically
amazing—an astounding property of the Airy function—that the functions
fn(ξ) are orthogonal :

∫ ∞

0

fm(ξ)fn(ξ) dξ = 0 : m �= n

I would not know how to construct an analytic proof, but the numerical evidence
is quite convincing: Mathematica does complain that “NIntegrate failed to
converge to prescribed accuracy after 7 recursive bisections” and that it
“suspects one of the following: highly oscillatory integrand or the true value of
the integral is 0,” but reports that (for example)

NIntegrate[f1f3, {x, 0,∞}] = −4.55018× 1015

Here follow graphs of the normalized functions (69):

28 Gea-Banacloche remarks that he was unable to find any such formulæ
in the literature, and in his Appendix sketches “the details of the ‘derivation’
[in the hope that] they might inspire somebody to find a better approximation.”
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Figure 13: Graphs of (reading top to bottom) f1(ξ), f2(ξ), f3(ξ)
and f4(ξ). Notice that

order = number of zero crossings +1
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Figure 14: Graphs of (reading top to bottom) f5(ξ), f6(ξ), f7(ξ)
and f8(ξ).
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26. Eigenvalues and eigenfunctions of the quantum bouncer. The quantum
bouncer presents a situation in which the eigenfunctions and eigenvalues are
“folded together” in way which—though characteristic of all variants of the
quantum free fall problem—is (or so I believe) quantum mechanically unique.

Solutions of the Schrödinger equation (49) are all of the form (54), but
constrained by the boundary condition (67):

ψ(x) = N ·Ai
(
k(x− E

mg )
)

with ψ(0) = N ·Ai
(
− k E

mg

)
= 0

Immediately −k E
mg = ξn, which by mg/k = mg

(
�
2

2m2g

)1
3 gives

En = −
(

mg2
�
2

2

)1
3 ξn : n = 1, 2, 3, . . .
|—recall that the ξn are themselves negative

which for large values of n (n � 5) is well approximated29

En ≈
(

mg2
�
2

2

)1
3
[
3π
2 (n− 1

4 )
] 2

3 =
[
9
8π

2
] 1

3 (mg2
�

2)
1
3 · (n− 1

4 )
2
3

↓

=
[

9
32mg2h2

] 1
3n

2
3 for n very large

Notice that “for n very large” we have obtained a result in precise agreement
with the result (46) of Planck’s old quantization procedure.30

29 We notice in the following connection that

(n− 1
4 )

2
3 = n

2
3 ·

{
1− 1

6n − 1
144n2 − 1

1296n3 − · · ·
}

30 I digress to remark that, while Planck’s procedure over-estimates the

ground state energy of an oscillator =
{

�ω : planck
1
2�ω : schrödinger

. . . in the case of a bouncer it under -estimates:

bouncer ground state energy =

{[
9
32

] 1
3 (mg2h2)

1
3

0.655185 (mg2h2)
1
3 : planck

bouncer ground state energy =

{[
1
2

] 1
3 ξ1(mg2h2)

1
3

1.855760 (mg2h2)
1
3 : schrödinger

I find this surprising . . . for, I guess, the admittedly irrelevant reason that I have
echoing in my head the central lesson of the variational method: “imperfect
guesses (and procedures?) always overestimate.” I acquire increased interest
now in the “wedge potential,” since (as was remarked in §17) it is “more
oscillator-like” than the bouncer.
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It is natural to write
En = mgan

where

an = maximal excursion of a classical bouncer with energy En

= −
(

�
2

2m2g

)1
3 ξn ≈

(
�
2

2m2g

)1
3
[
3π
2 (n− 1

4 )
] 2

3

The normalized eigenfunctions of the quantum bouncer can be described

ψn(x) =
√
kfn(kx)

and when graphed have the form already illustrated (Figures 13 & 14).

27. Comparison of quantum with classical probability density. Adopt units in
which k = 1, and assign to n a value large enough to make the point at issue,
yet not so large as to be computationally burdensome or graphically opaque:
n = 20 will do nicely. Drawing upon (68.2) and (70) we then have

ψ20(x) = (0.83261)Ai(−20.537 + x)

In this instance (i.e., when xmax = a20 = 20.537) the classical distribution
Q(x)—the classical counterpart to |ψ20(x)|2—is given by

Q(x) =




1
2
√

20.537
√

20.537− x
: 0 � x � 20.537

0 : 20.537 < x

Superimposed graphs of those distributions are shown in the following figure:

5 10 15 20

0.1

0.2

0.3

0.4

Figure 15: Superposition of the graphs of |ψ20(x)|2 and of its
classical counterpart. More commonly encountered is a figure taken
from the theory of harmonic oscillators: see, for example, Figure 2.5b
on page 42 in Griffiths’ Introduction to Quantum Mechanics.
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The likelihood that the particle will be found farther from the origin than
is classically allowed is in this instance given by∫ ∞

20.537

|ψ20(x)|2 dx = 0.04644

which is to say: we have in this instance a 4% quantum violation of what we
might classically expect. Pretty clearly: as n increases the “quantum violation”
decreases, which is the upshot of the familiar assertion that “classical mechanics
is not so much ‘quantum mechanics in the (necessarily only formal!) limit � ↓ 0’
as it is ‘quantum mechanics in the limit that the quantum numbers have become
large.’ ”

28. A first look at the quantum wedge-potential problem. Our recent subject—
the quantum physics of a bouncing ball—is far from exhausted: in fact, we
are only now within sight of “the good stuff” (construction of the propagator,
motion of wavepackets, study of the recurrence phenomenon, other more esoteric
topics31). But it will become increasingly natural to treat the “bouncer” and
“wedge-potential” problems in comparative conjunction, so I digress now to
develop the basics of the latter system. The following diagram underscores the
close relationship between the two systems:

Bouncer potential Wedge potential

The two systems share the same (free fall) Schrödinger equation, and are
distinguished by
• the fact that x assumes only positive values for the bouncer, but for the

wedge is allowed to assume both positive and negative values
• boundary conditions: for the bouncer we were led at (67) to require that
ψ vanish at x = 0; for the wedge we are led by ultimately the same physical
consideration (the requirement that probability current be continuous at
the points where the potential displays kinks) to require that

both ψ and ψ
′ ≡ ∂

∂xψ must be continuous at x = 0 (71)

The latter condition brings into play two classes of eigenfunctions:

31 I am thinking here mainly of the possible relation between some remarkable
identities presented at the end of the essay cited on page 37 and properties of
the “quantum zeta function” that arises from bouncer physics.
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• odd eigenfunctions: ψ(−x) = −ψ(x). These turn out to be close asssociates
of the bouncer eigenfunctions, and to have “bouncer eigenvalues;”
• even eigenfunctions: ψ(−x) = +ψ(x). These require a fresh extension

of our former line of argument. They lead to interdigitated eigenvalues and
a lowered groundstate energy.

29. Detailed properties of the Airy function—continued. Proceeding in imitation
of the pattern established in §25 . . .we read rough estimates of the locations
of the zeros of d

dξ Ai(ξ)—known to Mathematica as AiryAiPrime—from a graph

-20 -15 -10 -5 5

Figure 16: Graph of dAi(ξ)/dξ, used to obtain rough estimates of
the locations of the points 0 > η0 > η1 > · · · at which the derivative
of the Airy function vanishes.

of that function obtain the “seed data” that we use to construct the following

short table of zeros of the derivative
of the airy function

n ηn − [ 3π
8 (4n + 1)]

2
3

0 − 1.01879 − 1.11546
1 − 3.24820 − 3.26163
2 − 4.82010 − 4.82632
3 − 6.16331 − 6.16713
4 − 7.37218 − 7.37485
9 − 12.38479 − 12.38574

14 − 16.52050 − 16.52104
19 − 20.18863 − 20.18899

The third column is intended to establish the credentials of the claim (compare
(68.2)) that asymptotically

ηn ≈ −[ 3π
8 (4n + 1)]

2
3 (72)
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which is a truncated version of the much more elaborate formula given by
Abramowitz & Stegun.25 I have adopted 0, 1, 2, . . . indexing in place of our
former 1, 2, 3, . . . indexing to conform to the quantum mechanical convention
that assigns the subscript 0 to the ground state. We are not surprised, after a
glance back to Figure 12, to observe that

· · · < ξ3 < η2 < ξ2 < η1 < ξ1 < η0 < 0

(whence my use of the word “interdigitated” on the preceding page).

Now construct the odd wedge functions32

fn(y) ≡ θ(y)Ai(ξn + y)− θ(−y)Ai(ξn − y) : n = 1, 2, 3, . . .

and the even wedge functions

gn(y) ≡ θ(y)Ai(ηn + y) + θ(−y)Ai(ηn − y) : n = 0, 1, 2, . . .

and use NIntegrate[ ] to evaluate the normalization constants

Nodd
n ≡

[ ∫ +∞

−∞
[fn(y)]2 dy

]− 1
2

and N even
n ≡

[ ∫ +∞

−∞
[gn(y)]2 dy

]− 1
2

Use that information to construct the normalized functions

Fn(y) ≡ Nodd
n · fn(y) : n = 1, 2, 3, . . .

Gn(y) ≡ N even
n · gn(y) : n = 0, 1, 2, . . .

These procedures give

F1(y) = 1.00841
{
θ(y)Ai(−02.33811 + y)− θ(−y)Ai(−02.33811− y)

}
F2(y) = 0.88046

{
θ(y)Ai(−04.08795 + y)− θ(−y)Ai(−04.08795− y)

}
F3(y) = 0.81727

{
θ(y)Ai(−05.52056 + y)− θ(−y)Ai(−05.52056− y)

}
F4(y) = 0.77631

{
θ(y)Ai(−06.78671 + y)− θ(−y)Ai(−06.78671− y)

}
F5(y) = 0.74642

{
θ(y)Ai(−07.94413 + y)− θ(−y)Ai(−07.94413− y)

}
F10(y) = 0.66221

{
θ(y)Ai(−12.82878 + y)− θ(−y)Ai(−12.82878− y)

}
F15(y) = 0.61808

{
θ(y)Ai(−16.90563 + y)− θ(−y)Ai(−16.90563− y)

}
F20(y) = 0.58874

{
θ(y)Ai(−20.53733 + y)− θ(−y)Ai(−20.53733− y)

}
...

32 The Mathematica commands are of the form

f[y ]:=UnitStep[y] AiryAi[ξ + y] - UnitStep[-y] AiryAi[ξ - y]

Do not confuse these f -functions with the bouncer functions f of (69).
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G0(y) = 1.30784
{
θ(y)Ai(−01.01879 + y) + θ(−y)Ai(−01.01879− y)

}
G1(y) = 0.93634

{
θ(y)Ai(−03.24820 + y) + θ(−y)Ai(−03.24820− y)

}
G2(y) = 0.84666

{
θ(y)Ai(−04.82010 + y) + θ(−y)Ai(−04.82010− y)

}
G3(y) = 0.79581

{
θ(y)Ai(−06.16331 + y) + θ(−y)Ai(−06.16331− y)

}
G4(y) = 0.76081

{
θ(y)Ai(−07.37218 + y) + θ(−y)Ai(−07.37218− y)

}
G9(y) = 0.66813

{
θ(y)Ai(−12.38479 + y) + θ(−y)Ai(−12.38479− y)

}
G14(y) = 0.62168

{
θ(y)Ai(−16.52050 + y) + θ(−y)Ai(−16.52050− y)

}
G19(y) = 0.58630

{
θ(y)Ai(−20.18863 + y) + θ(−y)Ai(−20.18863− y)

}
...

Straightforward modification of Gea-Banacloche’s asymptotic description of the
bouncer normalization factors (page 38) leads us to anticipate that for odd
wedge functions we can write

Nodd
n ∼

[ π

2
√
−ξn

] 1
2 ≈

[ π2

3(4n− 1)

] 1
6

(73.1)

and in support of that expectation I offer the following data:

[
π

2
√

02.33811

] 1
2 = 1.01355 ,

[
π2

3(4·1−1)

] 1
6 = 1.01549 : compare 1.00841[

π
2
√

04.08795

] 1
2 = 0.88142 ,

[
π2

3(4·2−1)

] 1
6 = 0.88175 : compare 0.88046[

π
2
√

05.52056

] 1
2 = 0.81764 ,

[
π2

3(4·3−1)

] 1
6 = 0.81777 : compare 0.81727[

π
2
√

06.78671

] 1
2 = 0.77651 ,

[
π2

3(4·4−1)

] 1
6 = 0.77657 : compare 0.77632[

π
2
√

07.94413

] 1
2 = 0.74653 ,

[
π2

3(4·5−1)

] 1
6 = 0.74657 : compare 0.74642[

π
2
√

012.82878

] 1
2 = 0.66224 ,

[
π2

3(4·10−1)

] 1
6 = 0.66225 : compare 0.66221[

π
2
√

016.90563

] 1
2 = 0.61809 ,

[
π2

3(4·15−1)

] 1
6 = 0.61809 : compare 0.61808[

π
2
√

020.53733

] 1
2 = 0.58874 ,

[
π2

3(4·20−1)

] 1
6 = 0.58874 : compare 0.58874

It is not so obvious—yet perhaps not too surprising—that this obvious variant
of (73.1) does the job for even wedge functions:

N even
n ∼

[ π

2
√−ηn

] 1
2 ≈

[ π2

3(4n + 1)

] 1
6

(73.2)

That claim is supported by the numerical data shown on the next page:
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[
π

2
√

01.01879

] 1
2 = 1.24749 ,

[
π2

3(4·0+1)

] 1
6 = 1.21954 : compare 1.30784[

π
2
√

03.24820

] 1
2 = 0.93358 ,

[
π2

3(4·1+1)

] 1
6 = 0.93261 : compare 0.93634[

π
2
√

04.82010

] 1
2 = 0.84586 ,

[
π2

3(4·2+1)

] 1
6 = 0.84558 : compare 0.84666[

π
2
√

06.16331

] 1
2 = 0.79544 ,

[
π2

3(4·3+1)

] 1
6 = 0.79532 : compare 0.79581[

π
2
√

07.37218

] 1
2 = 0.76061 ,

[
π2

3(4·4+1)

] 1
6 = 0.76054 : compare 0.76081[

π
2
√

012.38479

] 1
2 = 0.66809 ,

[
π2

3(4·9+1)

] 1
6 = 0.66808 : compare 0.66813[

π
2
√

016.52050

] 1
2 = 0.62166 ,

[
π2

3(4·14+1)

] 1
6 = 0.62166 : compare 0.62168[

π
2
√

020.18863

] 1
2 = 0.59127 ,

[
π2

3(4·19+1)

] 1
6 = 0.59126 : compare 0.59127

I find it fairly amazing that the construcions (73) work as well as they do (which
is to say: quite well, even when n is small) . . . and utterly amazing that (on
numerical evidence that is consistent with quantum mechanical necessity)
• Fm(x) ⊥ Fn(x) if m �= n;
• Gm(x) ⊥ Gn(x) if m �= n;
• Fm(x) ⊥ Gn(x) in all cases.

If the functions are presented to Mathematica with only the accuracy expressed
on these pages (i.e., if the higher precision data normally concealed within
Mathematica’s memory is discarded) then one finds the following results

NIntegrate[F1(x) F2(x), {x,−∞,+∞}] = +1.16× 10−6

NIntegrate[G0(x)G1(x), {x,−∞,+∞}] = +8.11× 10−7

NIntegrate[F1(x)G1(x), {x,−∞,+∞}] = −1.09× 10−17

to be typical (though in some cases, especially cases involving wedge functions
of higher order, Mathematica complains of “lost precision”).

30. Eigenvalues and eigenfunctions for the quantum wedge problem. Those can,
in ascending spectral order, be described as follows:

ψ0(x) =
√
kG0(kx) with eigenvalue E0 =

(
1
2mg2

�
2
)1

3 · 1.01879

ψ1(x) =
√
kF1(kx) with eigenvalue E1 =

(
1
2mg2

�
2
)1

3 · 2.33811

ψ2(x) =
√
kG1(kx) with eigenvalue E2 =

(
1
2mg2

�
2
)1

3 · 3.24820

ψ3(x) =
√
kF2(kx) with eigenvalue E3 =

(
1
2mg2

�
2
)1

3 · 4.08795

ψ4(x) =
√
kG2(kx) with eigenvalue E4 =

(
1
2mg2

�
2
)1

3 · 4.82010

ψ5(x) =
√
kF3(kx) with eigenvalue E5 =

(
1
2mg2

�
2
)1

3 · 5.52056

ψ6(x) =
√
kG3(kx) with eigenvalue E6 =

(
1
2mg2

�
2
)1

3 · 6.16331
...
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The red entries exactly reproduce the bouncer spectrum. In the next pair of
figures I provide graphical representations of the wedge eigenfunctions described
above:
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Figure 17: Wedge eigenfunctions ψ0(x), . . . , ψ9(x), displayed in
ascending order (figure to be read “like a book”). Even G-functions
are seen in the left column, odd F -functions in the right column.
With a little practice one can discover the identity of any such figure
by counting zero-crossings and local extrema.
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Figure 18: Wedge eigenfunctions ψ18(x) & ψ19(x) (top row,
constructed from G9 & F10), ψ28(x) & ψ29(x) (middle row,
constructed from G14 & F15) and ψ38(x) & ψ39(x) (bottom row,
constructed from G19 & F20). Again, the functions in the left
column (those with even index) are clearly even, those in the right
column (those with odd index) as clearly odd functions of x.

31. Probabilistic aspects of the wedge problem. An obvious adjustment of the
argument that gave (40) gives

Qwedge(x) =




1
4
√
xmax

√
xmax − |x|

: 0 � |x| � xmax

0 : elsewhere

(74)

In Figure 19 (next page: compare Figure 8 on page 20) that distribution is
superimposed upon its quantum counterpart in the case ψ20.

32. Comparison with the result of Planck quantization. An obvious adjustment
of the argument that led in §14 to∮

p dx = 4
3p0xmax

= 4
3

√
2mE (E/mg) : bouncer

now gives
↓
= 8

3

√
2mE (E/mg) : wedge
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0.1
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Figure 19: Superimposed displays of |ψ20(x)|2 and its classical
counterpart Qwedge(x). In constructing the figure I have both k and
mg to unity, so xmax = 20.53733.

so Planck’s quantization condition33 gives

En−1 =
[

9
128

] 1
3 (mg2h2)

1
3n

2
3 : n = 1, 2, 3, . . .

=
[
72π2

128

] 1
3 ( 1

2mg2
�

2)
1
3n

2
3

= 1.77068( 1
2mg2

�
2)

1
3n

2
3

In particular, for the ground state we have (looking back again to page 47 for
the exact data)

E0/( 1
2mg2

�
2)

1
3 =

{ 1.77068 : planck
1.01879 : schrödinger

which (see again footnote 30 on page 47) now do stand in the naively anticipated
relationship.

That the wedge problem is in some respects “nicer/better-behaved” than
the bouncer is a point remarked already by J. J. Sakurai,34 whose interest in

33 It was actually Sommerfeld & Wilson who, in , first wrote
∮
pdx = nh

as an expression of Planck’s idea.
34 Modern Quantum Mechanics (revised edition ), pages 107–109. It is

a special pleasure for me to recall memories of John Sakurai, for he and I were
first-year graduate students together at Cornell in –, and used to play
flute and double bass duets together in the physics library in dead of night.
The contempt for theoretical fine points, the preoccupation with the physics
of physics that was then (and remains) a tradition at Cornell . . . caused me
to flee to Brandeis, but was precisely what John (who had spent his under-
graduate years at Harvard, in the shade of Schwinger) sought. In  he left
the University of Chicago to rejoin Schwinger at UCLA. He died in  while
visiting CERN (from which I had departed in ), decades before his time.
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the role of gravity in quantum mechanics was so well developed (see his pages
126–12935) that it was probably no accident that he selected the bouncer/wedge
problems to illustrate the practical application of the WKB approximation.36

33. Why the “bounced Gaussian” presents a problem. problem #1 is How to
describe the initial wavepacket? One might be tempted, in imitation of (60), to
write

ψ(x, 0) = 1√
σ
√

2π
e−

1
4

[
x−a

σ

]2

(75)

But that function (i ) does not vanish at x = 0, and (ii ) is normalized on the
wrong base (which is to say: on (−∞,∞) instead of on (0,∞)). On account of
(i ) the Gaussian (75) does not describe a possible state of the bouncer, though it
nearly does if a� σ: for example, if a = 10σ then ψ(0, 0) = 1.39×10−11ψ(a, 0).

We might resolve point both difficulties by writing

ψ(x, 0) = N ·
{
e−

1
4

[
x−a

σ

]2

− e−
1
4

[
x+a

σ

]2}
(76.1)

and setting

N =
[
σ
√

2π
(
1− e−

1
2 [a/σ]2

)]− 1
2

(76.2)

↓

=




1√
σ
√

2π
for a� σ; i.e., as a ↑ ∞

∞ for a� σ; i.e., as a ↓ 0

On its face, (76) appears to assume the improper form ∞ · 0 at a = 0, but by
l’Hôspital’s Rule we are led actually to the quite unpathological function

lim
a↓0

ψ(x, 0) =
[

2
π

] 1
4
[

1
σ

] 3
2xe−

1
4

[
x
σ

]2

(77)

and confirm that indeed
∫ ∞
0

(etc.)2 dx = 1.

It should be noted that J. Gea-Banacloche27 omits the preceding discussion:
he is content to proceed from (75) and to work in the approximation a � σ
(i.e., to assume that the wavepacket is dropped from a height large compared to
its width). And that none of the problems discussed above arise in connection
with the wedge problem: in that context (75) serves perfectly well as it stands.

35 The ALbert OVErhauser whose beautiful neutron diffraction experiment
he cites was our teacher (of solid state theory) at Cornell . . . and the father of a
lady physicist who called herself ALOVE, and who taught for one year at Reed
College, where she created the optics lab.

36 The upshot of Sakurai’s discussion is posed as Problems **8.5 and *8.6 in
Griffiths’ Introduction to Quantum Mechanics ().
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Figure 20: “Pinched Gaussian” wavepackets obtained from (76)
and (77), in which I have set σ = 1 and a = 0, 2, 4, 6, 8, 10, 15, 20.

problem #2: To describe the dynamically evolved wavepacket we have—in
principle—only to write

ψ(x, t) =
∑

n

cnψn(x)e−
i
�

Ent (78.1)

cn =
∫ ∞

0

ψn(ξ)ψ(ξ, 0) dξ (78.2)

but this is more easily said than done: the program presumes that
• that we possess exact descriptions of all eigenfunctions/eigenvalues; i.e., of

all the zeros of Ai(x), and all normalization factors;
• that we are able to perform the

∫
’s;

• that we are able to perform the final
∑

n.

Reverse the order of integration and summation. One then has

ψ(x, t) =
∫ ∞

0

K(x, t; ξ, 0)ψ(ξ, 0) dξ (79.1)

K(x, t; ξ, 0) =
∑

n

e−
i
�

Ent ψn(x)ψn(ξ) (79.2)

and sees that those same difficulties beset the spectral construction and use of
the propagator.

Identical difficulties attach to the wedge problem.

problem #3: We have no alternative but to resort to various approximation
schemes, but confront then the problem of distinguishing real/physical results
from artifacts, and here it is easy to stumble. For example: from (78.1) it
follows that the frequencies present in the motion of

|ψ(x, t)|2 =
∑
m,n

c∗mcnψm(x)ψn(x)e
i
�
(Em−En) t
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are given (see again page 41) by

ωmn ≡ − 1
�
E · ξmn with ξmn ≡ ξm − ξn

where now E ≡
(

1
2mg

2
�

2
) 1

3 . But the numbers

ξ12 ξ13 ξ14 . . .
ξ23 ξ24 . . .

ξ34 . . .
. . .

are (I assert in the absence of proof) irrational multiples of one another .37 It
becomes therefore difficult to understand how the resonances (“revivals”) which
Geo-Banacloche claims to observe can be real.

34. Approximate development of a Gaussian wavepacket as a superposition of
bouncer eigenfunctions. For the purposes of this discussion I will take the
bouncer eigenfunctions to be given by38

ψ1(x) =
√
k (1.4261) Ai(kx− 2.3381)

ψ2(x) =
√
k (1.2452) Ai(kx− 4.0879)

ψ3(x) =
√
k (1.1558) Ai(kx− 5.5206)

ψ4(x) =
√
k (1.0979) Ai(kx− 6.7867)

ψ5(x) =
√
k (1.0556) Ai(kx− 7.9441)

and, for n > 5, by39

ψn(x) =
√
k
[

8π2

3(4n− 1)

]1
6
Ai

(
kx−

[
3π
8 (4n− 1)

] 2
3
)

To describe our initial Gaussian wavepacket we adopt a “bouncer adapted”
version of (75), writing

ψ(x, 0; a, σ) =
√
k 1√

kσ
√

2π
e−

1
4

[k(x−a)
kσ

]2

: a� σ

but notice that in point of fact all the k’s spontaneously disappear.

The following figure indicates why we might expect the integrals cn to be
relatively small unless En/mg ≈ a± σ: if En/mg � a− σ then the integrand

37 In this respect the bouncer and wedge problems differ profoundly from the
harmonic oscillator (En ∼ n), the particle-in-a-box (En ∼ n2) and the Kepler
(En ∼ n−2) problem.

38 See again (69.2) and page 41.
39 See again (68.2) and (70) on pages 37/38.
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Figure 21: Graphical indication of why—for distinct reasons—we
expect the cn to be small if either ξn � ka or ξn � ka. To construct
the figure I have set k = 1.

never departs much from zero because it is the product of a pair of functions
(eigenfunction and Gaussian) that do not overlap much, while if En/mg � a+σ
then the Gaussian is “buzzed to death.” Moreover, we expect the cn to be
most sharply peaked at cmax when σ ≈ ξ1 − ξ2: if σ � ξ1 − ξ2 then many
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eigenfunctions will be needed to capture the detail written into the Gaussian,
while if σ � ξ1 − ξ2 then many eigenfunctions will enjoy significant overlap.
Those are our broad expectations. The question is: How do they square with
the details of the situation?

Look to some illustrative numerical evidence. Take

Gaussian wavepacket = ψ(x, 0; 15, 1.75)

where I have set σ = 1.75 ≈ ξ1−ξ2 = −2.3381+4.0879 = 1.7498. Mathematica
responds to the command

NIntegrate[Evaluate[ψ(x, 0; 15, 1.75) ∗ ψn(x), {x, 0,∞}]]
with complaints40 and this data

c1 = 0.0000
c2 = 0.0001
c3 = 0.0008
c4 = 0.0034
c5 = 0.0113
c6 = 0.0300
c7 = 0.0664
c8 = 0.1251
c9 = 0.2041
c10 = 0.2920
c11 = 0.3703
c12 = 0.4191
c13 = 0.4259 = cmax

c14 = 0.3902
c15 = 0.3233
c16 = 0.2427
c17 = 0.1653
c18 = 0.1021
c19 = 0.0572
c20 = 0.0290
c21 = 0.0132
c22 = 0.0054
c23 = 0.0020
c24 = 0.0006
c25 = 0.0002

40 “Underflow occurred in computation,” “NIntegrate failed to converge to
prescribed accuracy after 7 recursive bisections . . . ”
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0.1

0.2

0.3

0.4

0.5

Figure 22: ListPlot display of the data tabulated on the preceding
page. The cn’s • that contribute significantly to the representation
of that particular Gaussian wavepacket are seen to have

4 = 13 − 9 � n � 13 + 9 = 22

That it works! is convincingly demonstrated below:41

5 10 15 20 25
-0.1

0.1

0.2

0.3

0.4

0.5

Figure 23: Superimposed graphs of

ψ(x, 0; 15, 1.75) and
22∑

n=4

cnψn(x)

with c’s taken from the data displayed in Figure 22. The difference
is impreceptible.

In Figures 24 I display data taken from another pair of Gaussians—one
fatter, one thinner than the case σ = 1.75 discussed above. The result is in one
respect surprising, as noted in the caption.

41 I am encouraged on this evidence to think that Mathematica supplies good
data even when she complains.



Part IV: Quantum bouncer & wedge problems 57

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

Figure 24 (upper): Here superimposed upon the data • of the
preceding figure is data • associated with the relatively fatter
Gaussian σ = 2.5: the c’s are more broadly distributed about cmax

—precisely as anticipated.

Figure 24 (lower): Here the superimposed data • is associated
with the relatively sharper Gaussian σ = 1.0 . Contrary to what we
anticipated, the c’s are now still more narrowly distributed about
cmax. This is a development that awaits explanation.

We have proceeded thus far numerically. I turn now to discussion of some
analytical aspects of the situation.42 Drawing upon the integral representation
(52) of the Airy function, we by (78.2) have

cn = 1
πNn

1√
σ
√

2π

∫ ∞

0

{ ∫ ∞

0

cos
(
[y + ξn]u+ 1

3u
3
)
e−

1
4

[
y−a

σ

]2

du

}
dy

Reverse the order of integration, and (on the assumption that a � σ) replace

42 The pattern of the argument was sketched already by Gea-Banacloche near
the end of his §2.
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∫ +∞
0

dy by
∫ +∞
−∞ dy : Mathematica then supplies

{
etc.

}
= 2σ

√
π e−σ2u2

cos
(
[a+ ξn]u+ 1

3u
3
)

whence

cn =
[

4σ
π
√

2π

] 1
2
Nn

∫ ∞

0

e−σ2u2
cos

(
[a+ ξn]u+ 1

3u
3
)
du (80)

As a check on the accuracy of this result I set a = 15, σ = 1.75 and n = 13
(whence N13 = 0.8956 and ξ13 = −15.3403) and by numerical evaluation of
the integral obtain c13 = 0.4529, in precise agreement with the value tabulated
on page 55. I am confident that one would enjoy the same success with other
values of n.

If σ is large—which is (in dimensionless physical variables) to say: if

ka� kσ � 1 : entails σ � k–1 ≡
(

�
2

2m2g

) 1
3

—then the Gaussian e−σ2u2
dies so fast that only small u -values contribute to

the
∫

in (80): to exploit the implications of this fact we adopt the abbreviation
A ≡ a+ ξn and write

cos
(
Au+ 1

3u
3
)

= cosAu · cos
(
Au+ 1

3u
3
)

cosAu

= cosAu ·
{

1 − 1
3u

3 tanAu− 1
18u

6 + 1
162u

9 tanAu+ · · ·
}

Mathematica now supplies

∫ ∞

0

e−σ2u2
cosAudu =

√
π

2σ e
− 1

4 A2/σ2

−
∫ ∞

0

e−σ2u2 1
3u

3 sinAudu =
√

π
2σ e

− 1
4 A2/σ2 · A

3 − 6Aσ2

24σ6

... subsequent integrals are also “elementary”

on which basis we have

cn = 1√
σ
√

2π
Nn e

−[a+ ξn]2/4σ2
·
{

1 +
[a+ ξn]3 − 6[a+ ξn]σ2

24σ6
+ · · ·

}
(81)

This result accounts nicely for the Gaussian patterns evident in Figure 22 and
Figure 24 (upper), and provides insight into the circumstance responsible for
the slight deviations from “Gaussianness” evident in Figure 24 (lower). I have
been working with k = 1: one should insert k’s in the obvious way to restore
dimensional consistency to the

{
etc.

}
in (81).
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35. See the dropped wavepacket bounce. Generally, to launch

ψ(x, 0) =
∑

n

cmψn(x)

into dynamical motion we have only to let the individual eigenfunctions start
buzzing, each with its own characteristic eigenfrequency ωn = En/� :

↓
ψ(x, t) =

∑
n

cmψn(x) e−iωnt (82)

We have special interest in the motion of the associated probability density43

|ψ(x, t)|2 =
∑
m

∑
n

cmcnψm(x)ψn(x) ei(ωm − ωn)t

=
∑
m

∑
n

cmcnψm(x)ψn(x) cosωmnt with ωmn ≡ ωm − ωn

=
∑

n

[
cnψn(x)

]2 + 2
∑
m>n

∑
n

cmcnψm(x)ψn(x) cosωmnt (83)

Notice that if only two eigenstates enter into the construction of ψ(x, 0)

ψ(x, 0) = c1ψ1(x) + c2ψ2(x)

then (83) becomes

|ψ(x, t)|2 =
[
c1ψ1(x)

]2 +
[
c2ψ2(x)

]2 + 2 c1c2ψ1(x)ψ2(x) cos
{
(ω1 − ω2)t

}
Such motion is necessarily periodic. But if three (or more) eigenstates enter
into the construction of ψ(x, 0) then the description of |ψ(x, t)|2 involves terms
proportional to each of the following

cos
{
(ω1 − ω2)t

}
cos

{
(ω1 − ω3)t

}
cos

{
(ω2 − ω3)t

}
and will, in general, be aperiodic: periodicity in such a circumstance requires
the existence of integers p, q and r such that it is possible to write

(ω1 − ω2)τ = p · 2π
(ω1 − ω3)τ = q · 2π
(ω2 − ω3)τ = r · 2π


 with some appropriately selected τ

Which is to say:

ω1 − ω2

ω1 − ω3
,
ω1 − ω2

ω2 − ω3
and

ω1 − ω3

ω2 − ω3
must all be rational numbers

43 The applications of specific interest to us present only real ψn’s and real
cn’s, so I omit all of the anticipated ∗’s from my equations.
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Of course, if two of those ratios are rational then the rationality of the third
is automatic, but that does not diminish the force of the preceding periodicity
condition. (Generally, for what it’s worth: from ν frequencies one can construct
1
2ν(ν − 1) frequency differences, and 1

2ν(ν − 1) − 1 independent ratios of
differences, in terms of which all other such ratios can be expressed.)

Returning now from generalities to the bouncer: From (see again page 42
and recall that all the zeros ξn of Ai(x) are negative)

En = −mg
(

�
2

2m2g

) 1
3 ξn : bouncer eigenvalues (84.1)

we have
ωn = −

(
mg2

2�

) 1
3 ξn (84.2)

giving
ωp − ωq

ωr − ωs
=
ξp − ξq
ξr − ξs

I have no idea how to prove44 so must be content to

conjecture: All ratios
ξp − ξq
ξr − ξs

are irrational (85)

and on this basis to conclude that the motion of |ψ(x, t)|2 is (except in trivial
cases of the sort described above) aperiodic.45 The recurrent “collapses” and
“revivals” which are the subject of Gea-Banacloche’s §4 must evidently be subtle
phenomena, related only distantly to the familiar“periodicity of a bouncing ball”
. . .but I get ahead of myself: we must first expose those (surprising) phenomena
before it will make sense to try to understand them.

From (83) it follows that

〈x〉at time t =
∑
m

∑
n

cmcn〈x〉mn cosωmnt (86)

〈x〉mn ≡
∫ ∞

0

ψm(x)xψn(x) dx

Generally, we look to 〈x〉 because it is an object of direct physical/intuitive
interest, and because its t -dependence is something we can graph (whereas to
graph |ψ(x, t)|2 we must run a movie, and the graphical display of ψ(x, t) is
even more awkward). We might in the same spirit look to the t -dependence of
∆x ≡

√
〈(x− 〈x〉)2〉, and have diminishing interest also in the moving higher

44 I will pay $100 for either a proof or a counterexample!
45 Of course, the ratios (ξp−ξq)/(ξr−ξs) are always rational when the ξ’s are

described only to finitely many decimal places. As in practice they always will
be. The implication is that we must be alert to the psuedo-periodicity which is
an artifact of numerical calculation.



Part IV: Quantum bouncer & wedge problems 61

moments of |ψ(x, t)|2. Thus, in the case of the bouncer, do we acquire interest
in the integrals

〈x〉mn = k

∫ ∞

0

Ai(kx+ ξm) Ai(kx+ ξn)x dx (87)

which I will discuss in the case k = 1. The essentials of the analytical problem
now before us are developed very nicely by Gea-Banacloche in his §3, and I am
content here to follow his lead.

Gea-Banacloche begins—because it lends significance to some expressions
that turn up also in the quantum problem—with the observation that the
classical motion

x(t) = 1
2g(

1
2τ + t)( 1

2τ − t) : − 1
2τ < t < + 1

2τ (repeated periodically)

of a bouncing ball (see Figure 25) yields very naturally to Fourier analysis:

= B0 +
∞∑

p=1

Bp cos
[
2pπ(t/τ)

]
(88.1)

where46

B0 = (1/τ)
∫ + 1

2 τ

− 1
2 τ

x(u) du

= 1
12gτ

2

= 2
3xmax (88.2)

= time-averaged value of x(t)

=
∫ xmax

0

Q(x)x dx : Q(x) given by (40)

and

Bp = (2/τ)
∫ + 1

2 τ

− 1
2 τ

x(u) cos
[
2pπ(u/τ)

]
du

= −(−)p 1
2p2π2 gτ

2

= −(−)p 4
p2π2xmax (88.3)

The remarkable efficiency of (88)—which can be written

x(t) =
[

2
3 + 4

π2

{
1
12 cos

[
2π t

τ

]
− 1

22 cos
[
4π t

τ

]
+ 1

32 cos
[
6π t

τ

]
− · · ·

}]
· 18gτ

2

—is indicated in Figure 25, while in Figure 26 I look to

ẋ(t) = − 1
π

{
1
12 sin

[
2π t

τ

]
− 1

22 sin
[
4π t

τ

]
+ 1

32 sin
[
6π t

τ

]
− · · ·

}
·gτ (89.1)

ẍ(t) = −2
{

1
12 cos

[
2π t

τ

]
− 1

22 cos
[
4π t

τ

]
+ 1

32 cos
[
6π t

τ

]
− · · ·

}
·g (89.2)

with results that serve to underscore some of the subtle limitations of the Fourier
representation. The lower part of Figure 26 acquires special interest from the

46 Compare K. Rektorys (editor), Survey of Applicable Mathematics (),
page 709.
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− 3
2τ − 1

2τ + 1
2τ + 3

2τ

Figure 25: Graphs (above) of the classical bouncing ball trajectory
that during the central bounce − 1

2τ < t < + 1
2τ is described

x(t) = 1
2g(

1
2τ + t)( 1

2τ − t)

[in constructing the figure I set g = τ = 1] and (below) the sum of
only the first 10 terms of the Fourier representation (88) of x(t).
To all appearances, the inclusion of higher-order terms serves only
to sharpen detail “at the bounce.”

following circumstance: our bouncing ball moves as described by an equation
of motion of the form

mẍ(t) = F ·
∞∑

n =−∞
δ(t− 1

2τ + nτ)

where in order to achieve the right impulse (abrupt change of momentum) at
each bounce we must set F = 2mgτ .47 The implication is that we can write

47 From this point of view, τ controls the strength of the impulsive kick, which
determines the height of the flight, and shows up finally as the period.
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Figure 26: Above: the result (compare Figure 6) of retaining the
first 30 terms in the Fourier representation (89.1) of ẋ(t). Notice
the overshoot (“Gibbs’ phenomenon”) at the beginning and end of
each descending ramp. The Fourier representation of the sawtooth
waveform is, of course, an exercise familiar to engineers. Below:
the result of retaining the first 30 terms in the representation (89.2)
of ẍ(t). The interesting feature of the figure is that it is a mess:
30 terms is far too few to capture the exquisitely fine detail written
into the design of the “Dirac comb” that, for the reason explained
in the text, we might have expected to see.

Dirac comb ≡
∞∑

k=−∞
δ(t− 1

2τ + kτ) = 1
τ

∞∑
p=1

(−)p 1
p2 cos

[
2pπ t

τ

]
(90)

but it is the lesson of the figure that truncated versions of the sum at right are
not good for much! The Fourier representation (90) of the Dirac comb may,
nevertheless, prove useful (indeed: may already be known) to engineers with
“tick, tick, tick, . . . ” on their minds.
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We owe much to Gea-Banacloche the remarkable discovery that if fn(ξ)
refers to the normalized bouncer functions described at (69.2) on page 37 then

∫ ∞

0

fn(ξ) ξ fn+p(ξ) dξ =




2
3 |ξn| : p = 0

(−)p−1 2
(ξn+p − ξn)2

: p = 1, 2, 3, . . .
(91)

which he “was only able to guess at by considering the classical limit,” for
which he can provide no analytical proof, but which he considers—on convincing
numerical evidence—to be exact . Taking my data from (69.2) on page 37, I
provide an illustrative sample of that evidence:

NIntegrate[f4(ξ) ξ f4(ξ), {ξ, 0,∞}] = 4.52447
2
3ξ4 = 4.52447

NIntegrate[f4(ξ) ξ f5(ξ), {ξ, 0,∞}] = 1.49294

(−)1−12(ξ5 − ξ4)−2 = 1.49294
NIntegrate[f4(ξ) ξ f6(ξ), {ξ, 0,∞}] = −0.400045

(−)2−12(ξ6 − ξ4)−2 = −0.400045
NIntegrate[f4(ξ) ξ f7(ξ), {ξ, 0,∞}] = 0.188946

(−)3−12(ξ7 − ξ4)−2 = 0.188946
NIntegrate[f4(ξ) ξ f8(ξ), {ξ, 0,∞}] = −0.112210

(−)4−12(ξ8 − ξ4)−2 = −0.112210

NIntegrate[f5(ξ) ξ f5(ξ), {ξ, 0,∞}] = 5.29609
2
3ξ5 = 5.29609

NIntegrate[f5(ξ) ξ f6(ξ), {ξ, 0,∞}] = 1.71940

(−)1−12(ξ6 − ξ5)−2 = 1.71940
NIntegrate[f5(ξ) ξ f7(ξ), {ξ, 0,∞}] = −0.455230

(−)2−12(ξ7 − ξ5)−2 = −0.455230
NIntegrate[f5(ξ) ξ f8(ξ), {ξ, 0,∞}] = 0.212982

(−)3−12(ξ8 − ξ5)−2 = 0.212982
NIntegrate[f5(ξ) ξ f9(ξ), {ξ, 0,∞}] = −0.125509

(−)4−12(ξ9 − ξ5)−2 = −0.125509

Gea-Banacloche writes (−)p where he must have intended to write (−)p−1, but
apart from that trivial defect it would be difficult in the face of such evidence
to deny either the accuracy of (91) or that the resourceful Dr. Gea-Banacloche
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is to be applauded for an enviable stoke of genius.48

We are in possession now of all the information we need to plot the
dynamical motion of 〈x〉 that proceeds from any prescribed initial wavefunction
ψ(x, 0). To illustrate the point I return to the Gaussian wavepacket ψ(x, 0; a, σ)
described near the bottom of page 53. More particularly, we look to the case

ψ(x, 0; 15, 1.75) =
22∑

n=4

cnψn(x) in good approximation

plotted in Figure 23. We have this data already in hand:

c4 = 0.0034
c5 = 0.0113
c6 = 0.0300
c7 = 0.0664
c8 = 0.1251
c9 = 0.2041
c10 = 0.2920
c11 = 0.3703
c12 = 0.4191
c13 = 0.4259
c14 = 0.3902
c15 = 0.3233
c16 = 0.2427
c17 = 0.1653
c18 = 0.1021
c19 = 0.0572
c20 = 0.0290
c21 = 0.0132
c22 = 0.0054

ξ4 = 6.7867
ξ5 = 7.9441
ξ6 = 9.0227
ξ7 = 10.0402
ξ8 = 11.0085
ξ9 = 11.9360
ξ10 = 12.8288
ξ11 = 13.6915
ξ12 = 14.5278
ξ13 = 15.3408
ξ14 = 16.1327
ξ15 = 16.9056
ξ16 = 17.6613
ξ17 = 18.4011
ξ18 = 19.1264
ξ19 = 19.8381
ξ20 = 20.5373
ξ21 = 21.2248
ξ22 = 21.9014

48 It was today ( June ) brought to my attention by Tomoko Ishihara
that all of the pretty Airy relations that came originally to Gea-Banacloche’s
attention as results of numerical experimentation were promptly established
analytically by David M. Goodmanson (“A recursion relation for matrix
elements of the quantum bouncer. Comment on ‘A quantum bouncing ball,’
by Julio Gea-Banacloche,” AJP 68, 866 (2000)). In view of the fact that
Gea-Banacloche’s paper was published in the September 1999 issue of AJP, it is
remarkable that Goodmanson’s comment was stamped “received 28 September
1999.” Goodmanson appears to have no institutional affiliation.
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The cn-values reproduce data presented already on page 55, and as a check on
the accuracy/sufficiency of that data we compute

22∑
4

(cn)2 = 0.9999 ≈ 1.0000

The ξn-values are abbreviations of data presented on page 36, to which I
have added two entries computed with the aid of (68.1). Several additional
preparatory steps are necessary if we are to make effective use of Mathematica
and to make sense of the results to which we will be led. We agree, as several
times before, to adopt the dimensionless position coordinate

ξ ≡ kx =
(

2m2g
�2

)1
3x (92.1)

and, taking inspiration from (84.2)—i.e., in order to be able to write

ωn t =
(

mg2

2�

)1
3 |ξn|t = |ξn|θ

—we adopt also the dimensionless time coordinate

θ ≡
(

mg2

2�

)1
3 t (92.2)

Notice that in this notation the classical statement

xmax = 1
2g(thalf-period)2

becomes

ξmax =
(

2m2g
�2

)1
3 1

2g
(

mg2

2�

)−2
3 (θhalf-period)2 = (θhalf-period)2

giving
θ -period = 2

√
ξmax

Our chosen example involves really a Gaussian distribution of ξmax-values, but
if we assign to ξmax its most probable value we obtain

θ -period = 2
√

15 = 7.746

On the other hand, we might, with equal plausibility, compute the

expected θ -period ≡
∫ ∞

0

[
1√

1.75
√

2π
e−

1
4

[
ξ−15
1.75

]2
]2

2
√
ξ dξ = 7.733

If we adopt the former hypothesis then in dimensionless (ξ, θ)-coordinates the
classical bounce-bounce-bounce. . . can be described

ξ(θ) =
(√
ξmax + θ

)(√
ξmax − θ

)
= ξmax − θ2 : −

√
ξmax < θ < +

√
ξmax

which is to be repeated periodically: in the case of interest we therefore have

ξ(θ) =
∑

k

[
15 − (θ − k2

√
15)2

]
· UnitStep[15 − (θ − k2

√
15)2] (93)
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Organizing (86) to conform to our conventions and to what—especially in
view of (91)—we now understand to be the facts of the situation, we write

〈ξ〉θ = 2
3

22∑
4

cncn|ξn| − 4c4
22∑
5

(−)n−4cn
cos[(ξn − ξ4)θ]

(ξn − ξ4)2
(94)

− 4c5
22∑
6

(−)n−5cn
cos[(ξn − ξ5)θ]

(ξn − ξ5)2
− · · · + 4c21c22

cos[(ξ22 − ξ21)θ]
(ξ22 − ξ21)2

and are led to the following portfolio of figures:

1 2 3 4 5
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Figure 27: Here and in subsequent figures, the black curve derives
from (94), the red curve from its classical counterpart (93). The
θ-axis runs →, the ξ-axis runs ↑. We see that initially 〈ξ〉θ moves
along the classical parabola, but rebounds before it quite reaches the
reflective barrier at ξ = 0.
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Figure 28: The oscillation of 〈ξ〉θ is seen over a longer initial
interval to diminish in both amplitude and frequency.
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Figure 29: Over a still longer time interval the 〈ξ〉θ is seen to
become nearly quiescent, and then to begin small oscillation at a
higher frequency. It becomes clear on this longer time base that the

mean value of 〈ξ〉θ = 10 = 2
3 · 15

= classical mean value: see (88.2)
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Figure 30: Magnified central region of the preceding figure. The
higher frequency of the reborn oscillations invites description as a
kind of “frequency doubling.”
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Figure 31: In time the reborn oscillations grow in amplitude and
revert to something like their former amplitude/frequency relation.
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Figure 32: The oscillations of 〈ξ〉θ are seen over long times to
display semi-random (chaotic?) extinctions and rebirths. This is
a clear example of the collapse & revival phenomenon that has
recently been recognized to be a ubiquitous feature of semi-classical
quantum physics. The “quantum motion of the mean” shown here
is in marked contrast to what one might have anticipated from a
naive application of Ehrenfest’s theorem.

36. Things to do. The preceding discussion raises so many questions, opens
so many doors . . . that it seems well to attempt to construct a semi-rationally
ordered list of the issues now before us, to take stock of where we are before
plunging on.

• We have been watching the motion of 〈x〉t that follows upon “dropping”
a particular Gaussian wavepacket: ψ(x, 0; 15, 1.75). To what extent are our
results typical? It would be useful to devise Mathematica commands that
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permit one to range easily over the generality of cases ψ(x, 0; a, σ). This, I
suspect, would be easy for anyone with a command of Mathematica programing
techniques. When we wrote

a = 15 ·
(

�
2

2m2g

)1
3

we placed ourselves deep within the quantum realm: we would have special
interest, therefore, in cases where m and a are so large as to be “classical.”

• In some other contexts (free particle, particle in free fall, oscillator) it proves
very instructive to watch the motion of 〈x2 〉t and of

√
〈x2 〉t − (〈x〉t)2; i.e., to

watch the motion of the second moment of |ψ(x, t)|2. We are in position to do so
with the quantum bouncer, for Goodmanson has supplied us with a description
of the matrix elements (ψm|x2|ψn).

• 〈x〉t and 〈x2 〉t capture only some of the information written into |ψ(x, t)|2
(which in turn captures only some of the information borne by ψ(x, t)). We are
in position to use animation techniques to illustrate the motion of |ψ(x, t)|2.
Just such an animation is provided by Gea-Banacloche at the following web
site: http://www.uark.edu/misc/julio/bouncing ball/bouncing ball.html. It is
informative in a qualitative, gee-whizz kind of way, but difficult to interpret
and impossible to capture on the printed page. It does, however, bring to mind
this question:

• In what respects is a “bouncing Gaussian” similar to/different from a
Gaussian that smacks into a barrier and recoils? One should track down
the papers/animations/textbooks that refer to the latter (much more studied)
problem. The point at issue: How does “hitting your head on a wall” differ
from doing so again and again . . .unceasingly? Notice that it is very easy to
devise a potential from which all such problems can be recovered as special
cases:

β α

Figure 33: Description of the potential U(x;α, β). By assigning
suitably-selected values to α and β one can recover the free particle,
free fall, bouncer, wedge, brick wall, Crandall ramp—all of the
systems of present interest. I call this the “asymmetric wedge”
potential. See again the figure on page 43.
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• It would be interesting to do for the wedge what we have recently done for the
bouncer; i.e., to construct wedge analogs of Figures 27–32. What effect does
the relatively benign form of the wedge potential have on the collapse/revival
phenomenon? (Certainly it has a profound effect in the free particle limit
α = β = 0.)

• Finally the deep question: What has become of Ehrenfest’s theorem? We know
that the motion of 〈x〉 and 〈p〉 is—for all quantum states—exactly classical when
the Hamiltonian H(p, x) depends at most quadratically on its arguments . . . as
it does, for example, in the case of free fall:

H(p, x) = 1
2mp2 +mgx

The problem—for the bouncer, more clearly for the wedge—must have to do
with the funny things happening at x = 0; i.e., with the fact that our potential
is defined sector-wise (though linear on each sector). In this connection it may
be useful to notice that the U(x;α, β) illustrated in Figure 33 can be described

U(x;α, β) = αx · θ(x) − βx · θ(−x)

and if represent the unit step function θ(x) as the limit of a differentiable
function—this can be done in many ways, of which this49

θ(x) = lim
κ↑∞

1
2

[
1 + tanh(κx)

]

is an illustrative example—then we have

U(x;α, β) = lim
κ↑∞

U(x;α, β;κ)

U(x;α, β;κ) ≡ αx · 1
2

[
1 + tanh(κx)

]
− βx · 1

2

[
1 + tanh(−κx)

]
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Figure 2: Graph of the differentiable potential U(x;1,2;2).

49 See Spanier & Oldham, An Atlas of Functions (), page 67.
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Each of the resulting Hamiltonians

H(p, x;α, β;κ) = 1
2mp2 + U(x;α, β;κ)

has the merit of being (for every finite value of κ) infinitely differentiable,
and therefore well-adapted to the argument upon which Ehrenfest’s theorem is
based. Note, however, that the Hamiltonian H(p, x; •, •; •) does not depended
“at most quadratically on its arguments.”

37. Goodmanson’s analytical proof/extension of Gea-Banacloche’s emperical
discoveries. My source here is the short paper48 by David M. Goodmanson
that was mentioned already on page 65. I will adopt a slight modification of
Goodmanson’s notation.

Let the zeros of Ai(x) be notated −xn : · · · − x3 < −x2 < −x1 < 0, the
point to notice being that the xn themselves are now positive numbers. Define

An(x) ≡ Ai(x− xn) :
{

translated Airy function with
nth zero sitting at the origin

and agree to work on the “bouncer half-line” x � 0: all
∫

’s will be understood
therefore to mean

∫ ∞
0

. Ai(x) is a solution of Airy’s differential equation(50)

Ai
′′
(x) = xAi(x)

so we have

A
′′
n (x) = (x− xn)An(x) (95.1)

and

An(xn) = 0 (95.2)

Notice that equations (95) do not require that the xn be explicitly known.

Goodmanson’s ingenious point of departure is the trivial identity
[
− f

′′
(AmAn)

′
+ 2f

′
A

′
mA

′
n

]∞
0

=
∫ ∞

0

[
− f

′′
(AmAn)

′
+ 2f

′
A

′
mA

′
n

]′
dx (96)

where f(x) is a generic placeholder that will acquire enforced properties as we
proceed: our interest will attach ultimately to the cases f(x) = xp : p � 0.

Look to the integrand on the right: we have
[
− f

′′
(AmAn)

′
+ 2f

′
A

′
mA

′
n

]′
= −f ′′′

(AmAn)
′
+ f

′′[
2A

′
mA

′
n − (AmAn)

′′]
+ 2f

′
(A

′′
mA

′
n +A

′
mA

′′
n)

Using (95.1) to eliminate all the A′′ -terms, we obtain

= − f
′′′

(AmAn)
′ − f

′′
AmAn(2x− xm − xn)

+ 2f
′[
AmA

′
n(x− xm) +AnA

′
m(x− xn)

]



Part IV: Quantum bouncer & wedge problems 73

Integration by parts gives
∫ ∞

0

[
− f

′′′
(AmAn)

′]
dx = −f ′′′

(AmAn)
∣∣∣∞
0

+
∫ ∞

0

f
′′′′
AmAn dx

where the leading term on the right drops away because An(0) = An(∞) = 0.
We now have

left side of (96) =
∫ ∞

0

AmAn

[
f

′′′′− 2(x− xave)f
′′]
dx (97)

+
∫ ∞

0

2f
′[
AmA

′
n(x− xm) +AnA

′
m(x− xn)

]
dx

where with Goodmanson we have written

(2x− xm − xn) = 2
(
x− xm + xn

2

)
≡ 2(x− xave)

The resourceful Dr. Goodmanson uses the identity

ab+ cd = 1
2 (a+ c)(b+ d) + 1

2 (a− c)(b− d)

to bring the second of the preceding integrals to the form
∫ ∞

0

[
2f

′
(AmAn)

′
(x− xave) − f

′
(AmA

′
n −AnA

′
m)(xm − xn)

]
dx

and after an integration by parts obtains
∫ ∞

0

{
AmAn

[
− 2f

′′
(x− xave) − 2f

′]
+ f(AmA

′′
n −AnA

′′
m)(xm − xn)

}
dx

which, if we again use (95.1) to eliminate the A′′ -terms, becomes
∫ ∞

0

AmAn

[
− 2f

′′
(x− xave) − 2f

′
+ f(xm − xn)2

]
dx

Returning with this information to (97) we have what I will call “Goodmanson’s
identity”

[
− f

′′
(AmAn)

′
+ 2f

′
A

′
mA

′
n

]∞
0

(98)

=
∫ ∞

0

AmAn

[
f

′′′′− 4(x− xave)f
′′ − 2f

′
+ (xm − xn)2f

]
dx

It is from (98) that Goodmanson extracts all of his remarkable conclusions:

Set m = n and f(x) = x Then (98) reads

[
2A

′
nA

′
n

]∞
0

=
∫ ∞

0

AnAn

[
− 2

]
dx
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which by A
′
n(∞) = 0 becomes∫ ∞

0

A2
n(x) dx =

[
A

′
n(0)

]2
The normalized bouncer eigenfunctions can therefore be described

ψn(x) =NnAn(x)

Nn =
(
|A′

n(0)|
)–1 ≡

(
|A′

(−xn)|
)–1 (exactly!) (99)

But we are informed by Abramowitz & Stegun (10.4.96) that

A
′
(−xn) = (−)n−1f1

[
3π
8 (4n− 1)

]
f1(z) ≡ π− 1

2 z
1
6
(
1 + 5

48z
−2 − 1525

4608z
−4 + · · ·

)
so in leading order we have

Nn =
[

3
8π2 (4n− 1)

]− 1
6

In thus accounting for Gea-Banacloche’s emperical formula (70) Goodmanson
has greatly improved upon it . . . and at the same time fulfilled the hope that
inspired Gea-Banacloche to write his Appendix. But Goodmanson at a single
stroke also accomplished much more:

Multiply (98) by NmNn to obtain[
− f

′′
(ψmψn)

′
+ 2f

′
ψ

′
mψ

′
n

]∞
0

=
∫ ∞

0

ψmψn

[
f

′′′′− 4(x− xave)f
′′ − 2f

′
+ (xm − xn)2f

]
dx

≡ 〈m|
[
f

′′′′− 4(x− xave)f
′′ − 2f

′
+ (xm − xn)2f

]
|n〉

and notice that[
− f

′′
(ψmψn)

′
]∞
0

=
[
2f

′
ψ

′
mψ

′
n

]∞
= 0 by established properties of ψn(x)

So we have

〈m|
[
f

′′′′− 4(x− xave)f
′′ − 2f

′
+ (xm − xn)2f

]
|n〉 = −2f

′
ψ

′
mψ

′
n

∣∣∣
0

(100)

Set f(x) = xp with p � 0 and notice that the expression on the right side of
(100) now vanishes unless p = 1. In this specialized instance of (100) we have

p(p− 1)(p− 2)(p− 3)〈m|xp−4|n〉
+4p(p− 1)xave〈m|xp−2|n〉

−2p(2p− 1)〈m|xp−1|n〉
+(xm − xn)2〈m|xp−0|n〉 = −2δ1pψ

′
m(0)ψ

′
n(0)

= 2δ1p(−)m−n+1 (101)

where the factor (−)m−n = (−)m+n arose from the “dangling Abramowitz &
Stegun signs” that were discarded when we constructed Nn, and where it is
understood that terms of the form 〈m|xnegative power|n〉 are to be abandoned.
It is as implications of (101) that Goodmanson obtains his results:
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Set m = n and p = 0, 1, 2, 3, . . . and read off statements which after easy
serial simplifications become

p = 0 : 0 = 0
p = 1 : 〈n|n〉 = 1 (102.1)
p = 2 : 〈n|x|n〉 = 2

3xn (102.2)

p = 3 : 〈n|x2|n〉 = 4
5xn〈n|x|n〉 = 8

15x
2
n (102.3)

...

Of these, (102.1) reasserts the normalization of the bouncer state |n〉, (102.2)
reproduces a result to which Gea-Banacloche was led “experimentally” on the
basis of a classical guess,50 and (102.3) is new (but would doubtless have been
guessed by Gea-Banacloche if he had had any interest in 〈n|x2|n〉).

Set m 	= n and p = 0, 1, 2, 3, . . . Goodmanson is led to

p = 0 : 〈m|n〉 = 0 (103.0)
p = 1 : 〈m|x|n〉 = 2(−)m−n+1(xm − xn)−2 (103.1)
p = 2 : 〈m|x2|n〉 = 12〈m|x|n〉(xm − xn)−2

= 24(−)m−n+1(xm − xn)−4 (103.2)
...

Of these, (103.0) asserts the orthogonality of the bouncer eigenstates, (103.1)
establishes the exactness of a relation that Gea-Banacloche had discovered
experimentally and guessed to be exact, and (103.2) is again new.

Goodmanson has managed by a cunning argument that, however, employs
only the simplest of technical means (integration by parts) to establish an
infinitude of exact formulæ that involve the transcendental zeros of the Airy
function but do not presume those xn to be explicitly known. His argument
appears to hinge essentially on the simplicity of Airy’s differential equation
(i.e., upon (95)), and would not appear to be applicable within a wider context
—would not appear to have things to say about (say) the functions defined

Jn(x) ≡ J0(x− xn) where J0(xn) = 0

—so it seems unlikely that he adapted his argument from some established
source: how he managed to come up with (96) as a point of departure remains
therefore a mystery.

38. Motion of the second moment. Goodmanson has placed us in position to
study the motion of 〈x2〉t, which we do by looking graphically to the motion of
〈ξ2〉θ. To that end we have only to make the substitutions

50 See again (91) on page 64. The result is foreshadowed by (88.2), page 61.



76 Classical/quantum dynamics of a particle in free fall

2
3 |ξn| 
−→ 8

15ξ
2
n

2(−)n−p(ξn − ξp)−2 
−→ 24(−)n−p(ξn − ξp)−4

in (94). That procedure gives

〈ξ2〉θ = 8
15

22∑
4

cncnξ
2
n − 48c4

22∑
5

(−)n−4cn
cos[(ξn − ξ4)θ]

(ξn − ξ4)4
(104)

− 48c5
22∑
6

(−)n−5cn
cos[(ξn − ξ5)θ]

(ξn − ξ5)4
− · · · + 48c21c22

cos[(ξ22 − ξ21)θ]
(ξ22 − ξ21)4

But before we look to the graphical implications of (104) we pause to acquire
some benchmarks:

From the bouncer-adapted Gaussian

ψ(ξ, 0; a, σ) = 1√
σ
√

2π
e−

1
4

[ (ξ−a)
σ

]2

: a  σ > 0

we have
〈ξ0〉 = 1

〈ξ1〉 = a

〈ξ2〉 = a2 + σ2

(∆ξ)2 ≡ 〈(ξ − 〈ξ〉)2〉 = 〈ξ2〉 − 〈ξ〉2 = σ2

which in the case of immediate interest—the case ψ(ξ, 0; 15, 1.75)—should mark
the initial values

〈ξ1〉0 = 15

〈ξ2〉0 = 228.063

(∆ξ)20 = (1.75)2 = 3.06250


 (105.1)

of such curves as we will be examining—as, indeed, 〈ξ1〉0 = 15 does already
mark the initial values of the curves shown in Figures 27, 28, 29, 31 & 32. Now
let the classical bouncer distribution (40) be written

Q(ξ) =
1

2
√
a(a− ξ)

and look to the associated classical moments 〈ξp〉classical ≡
∫ a

0
ξpQ(ξ) dξ. By

computation we find

〈ξ0〉classical = 1

〈ξ1〉classical = 2
3a : compare (104.2)!

〈ξ2〉classical = 8
15a

2 : compare (104.3)!

(∆ξ)2classical = 4
45a

2
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which at a = 15 become
〈ξ1〉∞ = 10

〈ξ2〉∞ = 120

(∆ξ)2∞ = 20


 (105.2)

We have learned to anticipate that these are the numbers about which our
quantum curves will asymptotically dither (whence the subscript ∞) . . . and
indeed: the curves in Figures 27–32 are in fact seen to dither about 〈ξ1〉∞ = 10.

I present now a portfolio of figures—based upon (104)—which illustrate
aspects of the time-dependence of the second moment 〈ξ2〉θ, followed by a
second portfolio—based jointly upon (104) and (94)—showing the motion of
the “squared uncertainty” (∆ξ)2θ .
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Figure 35: Early motion of 〈ξ2〉. From the fact that the initial
value is in agreement with (105.1) we conclude that the trunca-
tions built into (104) do not introduce significant inaccuracies. Here
and in subsequent figures, the red curve is an amplified trace of the
classical motion ξclassical(θ), and is intended to serve only as a clock.
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Figure 36: Motion of 〈ξ2〉 over the longer term. SeeFigure 28.
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Figure 37: The motion of 〈ξ2〉“collapses” to the value anticipated
at (105.2).
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Figure 38: Collapse is followed by a “revival” even more distinct
than that exhibited by the first moment (Figure 31).
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Figure 39: The phase shift and frequency doubling encountered
already in Figure 30 show up also in the motion of 〈ξ2〉.
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Figure 40: Semi-chaotic motion of 〈ξ2〉 in the long term. This
ends the set of figures relating to the motion of 〈ξ2〉: we turn now
to the motion of (∆ξ)2.
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Figure 41: Initial motion of (∆ξ)2. The initial value conforms to
(105.1), and during the first part of the first bounce the growth of
(∆ξ)2 is plausibly hyperbolic, as for a particle in free fall.
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Figure 42: Motion of (∆ξ)2 in the longer term. Note the details
coincident with the classical bounce points, other details that slightly
anticipate the top of the classical flight.
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Figure 43: The motion of (∆ξ)2 in the still longer term does not
display a conspicuous collapse, but does asymptotically dither about
the classical value given in (105.2).
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Figure 44: The motion of (∆ξ)2 in the still longer term does not
display a conspicuous collapse, but does asymptotically dither about
the classical value given in (105.2).

39. Collapse & revival. The figures, though they pertain to an arbitrarily-selected
particular case, establish the existence of a “collapse/revival phenomenon”—
quite pronounced during the “adolescence” of 〈ξ1〉θ and 〈ξ2〉θ, semi-random and
less pronounced when those (also other?) moments have reached a riper old age.
Can the gross features of the phenomenon be understood theoretically?


